
Space Odyssey: An Experimental Software Security Analysis of Satellites

Johannes Willbold∗, Moritz Schloegel∗‡, Manuel Vögele∗, Maximilian Gerhardt∗,
Thorsten Holz‡, Ali Abbasi‡

∗Ruhr University Bochum, firstname.lastname@rub.de
‡CISPA Helmholtz Center for Information Security, lastname@cispa.de

Abstract—Satellites are an essential aspect of our modern
society and have contributed significantly to the way we
live today, most notable through modern telecommunications,
global positioning, and Earth observation. In recent years, and
especially in the wake of the New Space Era, the number of
satellite deployments has seen explosive growth. Despite its
critical importance, little academic research has been con-
ducted on satellite security and, in particular, on the security of
onboard firmware. This lack likely stems from by now outdated
assumptions on achieving security by obscurity, effectively
preventing meaningful research on satellite firmware.

In this paper, we first provide a taxonomy of threats
against satellite firmware. We then conduct an experimental
security analysis of three real-world satellite firmware images.
We base our analysis on a set of real-world attacker models
and find several security-critical vulnerabilities in all analyzed
firmware images. The results of our experimental security
assessment show that modern in-orbit satellites suffer from
different software security vulnerabilities and often a lack
of proper access protection mechanisms. They also underline
the need to overcome prevailing but obsolete assumptions. To
substantiate our observations, we also performed a survey of
19 professional satellite developers to obtain a comprehensive
picture of the satellite security landscape.

Index Terms—satellites, satellite security, space segment, satel-
lite firmware, threat taxonomy, software security

1. Introduction

Satellites are sophisticated technical devices that are
placed in outer space for research purposes or to provide
terrestrial applications with services that leverage the cover-
age of the Earth’s surface. While the first satellite, Sputnik,
dates back to 1957, we are in the midst of a renaissance of
spaceflight referred to as New Space Era [1]. Especially in
recent years, we have observed an enormous growth in the
number of earth-orbiting satellites. According to the United
Nations Office for Outer Space Affairs (UNOOSA), their
number has almost doubled from 4, 867 in 2019 to 9, 350

in 2022 [2]. The vast majority of these satellites form mega-
constellations like Starlink, which plans to launch more than
40, 000 satellites in the coming years [3].

Small satellites [4] are at the heart of this New Space Era
as their size and the widespread use of Commercial off-the-
shelf (COTS) components makes them affordable even for
small institutions. Furthermore, they cover a broad spectrum
of use cases ranging from commercial applications (like
Earth observation, machine-to-machine communication, and
Internet services) to research applications, such as technol-
ogy testing, weather and earthquake forecasting, and even
interplanetary missions [5]–[8].

Although their applications vary widely, small satellites
commonly consist of radio equipment and microcontroller
boards. Hence—in the broadest sense—they are computer
systems connected to a ground station on Earth and, some-
times, even to other satellites. Because they rely on wireless
connections for command and control and use microcon-
trollers, they are potentially as vulnerable to attacks as any
other connected IT platform on Earth.

This issue has not been very relevant in the past, since
access to ground stations was expensive and limited to
large satellite operators. However, the situation changed
fundamentally in recent years. Nowadays, ground stations
are even affordable for private individuals and with the
emergence of Ground Station as a Service (GSaaS) models,
such as those offered by Amazon Web Services [9] and
Microsoft Azure [10], the entry barrier becomes even lower.
We have seen in the mobile network security domain how
the providers’ assumption that the radio equipment required
for attacks would be too costly and out of reach for attackers
was ultimately disproved by technological advances [11].
Similarly, affordable ground stations create a novel attack
surface, where adversaries can communicate with satel-
lites and take advantage of software vulnerabilities. If they
successfully compromise the satellite’s firmware, they can
access the satellite and potentially take complete control of
the system.

Despite warnings being made early [12], little has
been done to address this problem for several reasons, as
Falco [13] points out. While the lack of security standards

1

for satellites and the complex supply chain complicate the
situation, the main reason is the inaccessibility of satellite
firmware. Historically, satellite developers have relied on
security by obscurity. The developers of the Iridium network
even mentioned that their system would be too complex
for attackers [13]. Still, Driessen et al. have shown that
attackers can successfully decrypt the communication of the
network [14]. Especially the inaccessibility of satellites in
orbit makes dumping of the firmware by researchers very
challenging (if not impossible), impeding progress in this
area. Hence, the developers of satellite firmware act as
gatekeepers and do not provide researchers with research
subjects. Notably, Pavur and Martinovic [15], as well as
Falco [13], acknowledge that the topic is still understudied
and conclude that collaboration between satellite develop-
ment and the security field is required. Additionally, well-
known topics like the security of satellite communication,
the security of satellite-based Internet services, and threat
scenarios for satellites have recently gained increasing at-
tention [16], [17]. However, discussions around individual
satellites typically lack technical details of satellite and
real-world foundations due to the inaccessibility of satellite
software.

In this paper, we make three contributions to systemat-
ically improve satellite security. First, we present a taxon-
omy of threats against onboard satellite firmware. Such a
systematic review of the attack surfaces allows us to better
represent the complex nature of satellites and categorize
security-relevant findings throughout the paper.

Second, we conduct an experimental and comprehensive
security analysis of three real-world, in-orbit satellites to
better understand the attack surface and the current state of
software security in this particular domain. We focus on Low
Earth Orbit (LEO) satellites, as this orbit is the main focus
of the New Space Era. The most prevalent satellite class
is the nanosatellite, more specifically, the CubeSat which
is a standard form factor of 10 cm cubes (called Units or
U). These satellites typically weigh less than 1.33 kg per U
and are used in many different projects. After a long period
of persuasion, trust building, discussions, and contracts, we
obtained access to several satellite firmware images that we
were able to analyze. As a result of our security assessment,
we found six different kinds of security vulnerabilities in
recently launched modern spacecraft, including unprotected
telecommand interfaces. All vulnerabilities have been re-
sponsibly disclosed to the vendors. Note that the entry
barrier to identify these vulnerabilities was complex, given
the sensitive nature of these systems. To the best of our
knowledge, our work is the first to demonstrate exploitation
of satellite firmware vulnerabilities allowing attackers to
gain persistent control over the satellite.

Third, we conducted a survey of 19 professional satel-
lite engineers and developers to broaden the scope of our
research. In total, the responses cover technical information
on 17 satellites, and the participants worked on a total of
132 satellites. Our survey reveals that protocol obscurity is
as prevalent as encryption for access protection and that
small development teams are rather inclined to develop full

ISLSpace
Segment

User Segment Ground Segment

Service
TC/TM

Space Protocol

Figure 1: General overview of satellite operations, which
evolve around the space segment and the ground segment to
provide service to the user segment.

custom protocols instead of using existing ones. As one of
our survey participants mentioned: “We focused on providing
a functioning system instead of a secure one”.
In summary, we make the following main contributions:

• A taxonomy of threats and accompanying attacker
models against onboard satellite firmware that pro-
vides a systematic overview and enables us to derive
satellite-specific threat models.

• A systematic security analysis of three real-world
satellite firmware images that uncovered 13 vulnera-
bilities and is based on an attacker model accounting
for recent technical developments (e.g., GSaaS).

• A satellite community survey to challenge our tech-
nical results and shed light on the views that profes-
sionals from the space community have on security.

2. Satellite Context

An artificial satellite (typically abbreviated as satellite)
is an object intentionally placed in outer space that orbits
another body, such as the Earth. Satellites are designed to
operate in the harsh conditions of space, which include
extreme temperature variations of about 200 °C occurring
more than ten times a day, a near vacuum, and cosmic
radiation. However, deployment in space is often necessary
to provide a space-derived service to Earth, with common
satellite applications including communications, Earth ob-
servation, and research. While most satellites are deployed in
LEO (250–2000 km), other orbits such as the Geostationary
Orbit (GEO) (35,786 km) may be necessary depending on
the purpose of the satellite.

2.1. Satellite Operations

Satellite operations, as shown in Figure 1, evolve around
three main components: the group segment, which operates
the satellite-based service, space segment consisting of all
space assets, and the user segment, which receives a satellite

2

Figure 2: Overview of the different components typically
found in a common satellite that features default components
for a satellite payload (light grey) and bus (dark grey).

service such as Global Positioning System (GPS) or com-
munication.

2.1.1. Ground Segment. The ground segment is the center
of all satellite operations throughout the entire lifetime of a
satellite. A team of operators communicates with the satel-
lite using a Ground Station (GS) to provide new instructions
to the satellite, referred to as Telecommand (TC). In turn,
the satellite sends Telemetry (TM) back to the GS, providing
information about the satellite’s status, errors, and other
metrics. The TC uses a space protocol, which we describe
in Section 2.3. In the following, we refer to the combination
of TC and TM data as TC/TM traffic.

2.1.2. Space Segment. The space segment includes all
spacecraft involved in the satellite operations, which may
be just a single satellite or an entire constellation. These
satellites are initially launched into orbit using a launch ve-
hicle, i.e., a rocket, and then undergo an orbital deployment
phase to initiate communications with the ground segment.
During the nominal operations phase, which describes reg-
ular service operations, the satellites may communicate with
each other via an Inter-Satellite Link (ISL).

2.1.3. User Segment. A terminal, e.g., a Very Small Aper-
ture Terminal (VSAT) or GPS receiver in the user segment,
receives the service provided by the space segment. Note
that some satellites, like Earth observation satellites, com-
municate exclusively with their ground segment and do not
include a user segment.

2.2. Satellite Architecture

Figure 2 introduces the components commonly found in
a modern satellite, which are split into a satellite payload
and a satellite bus. The satellite payload consists of mission-
specific equipment, such as a high-resolution camera for
Earth observation or powerful radio hardware for telecom-
munications. The satellite bus encompasses all components
required to operate and maintain the satellite. It is designed
to operate independently of the payload, but conversely, the
payload relies on the bus. We refer to this separation as bus-
payload separation. In our security analysis, we therefore

focus on the satellite bus because, unlike many payloads, it
grants attackers full control over a satellite.

2.2.1. Command and Data Handling System (CDHS).
The bus is centered around the CDHS, which manages the
satellite and controls all functions of the spacecraft. The
CDHS uses an On-Board Controller (OBC) that employs
a computing platform, i.e., a microcontroller and mem-
ory, similar to terrestrial embedded devices. The software
executed on this system is called the On-Board Software
(OBSW), which is the main focus of our work. It imple-
ments a remote-control server, usually based on a Real-
Time Operating System (RTOS), akin to terrestrial real-
time applications. The main task of the OBSW is handling
TC/TM traffic, providing data storage, scheduling com-
mands, performing autonomous actions, and updating the
program code. Crucially, the OBSW, as any software, is
vulnerable to common software faults that attackers may
exploit to gain unauthorized control over the CDHS.

2.2.2. Communications Module (COM). Communication
with the GS is handled by the Communication Module
(COM), which consists of an antenna, a radio, and some-
times a computing setup to handle decoding, protocol im-
plementations, and access projection. Further, the COM
is usually only dedicated to TC/TM traffic, whereas high
bandwidth traffic, such as the payload data downlink, is
often handled by a more powerful radio setup. Since the
COM is directly coupled with the CDHS to handle TC/TM
traffic, it is also the main entry point for adversaries, creating
a significant attack surface. Additionally, protocol imple-
mentations in the COM may be security relevant, as it may
be the first line of defense.

2.2.3. Attitude Determination and Control System
(ADCS). Satellites employ an ADCS to determine and
adjust their attitude so that they can point antennas towards
the Earth and solar panels at the Sun. In addition, the ADCS
performs autonomous detumbling to stop the satellite’s an-
gular spinning after it is released from the launch vehicle,
which is necessary to establish the initial link. Additionally,
the satellite might also use a thruster to create an Attitude
and Orbit Control System (AOCS) for minor orbit changes,
which is particularly important for security reasons. An
AOCS makes satellites cyber-physical systems as they can
affect their physical environment by crashing into another
object, which can lead to a devastating orbital chain reaction
(cf. Section 3.1.1).

2.2.4. Power Supply (EPS). The Electrical Power System
(EPS) is the satellite’s power supply, usually generated by
solar panels and stored in batteries to provide power in the
absence of light, such as when circling around the Earth. Ad-
ditionally, it is critical that the battery never fully depletes,
as the satellite cannot restart in that case. Hence, power
management is crucial to survivability, as battery deep-
draining is of interest to attackers to permanently disable
a satellite.

3

2.2.5. Payload. While the payload mostly deploys mission-
specific equipment, it often also deploys a Payload Data
Handling System (PDHS) that acts akin to a CDHS. A
PDHS can either receive control traffic from a Payload Com-
munication Module (PLCOM), which can be any receiver
on the payload, or it can handle general data processing
tasks from the payload equipment. Due to the high degree
of customization on the payload, the exact terms for the
PDHS and PLCOM may vary in other satellite descriptions.

2.3. Satellite Communication Protocols

A satellite’s TC/TM traffic is communicated via a satel-
lite communications protocol, which we referred to as space
protocol in Figure 1. The main organization for publishing
such space protocols is the Consultative Committee for
Space Data Systems (CCSDS), a consortium of numer-
ous space agencies that agree on standards. Ultimately,
the CCSDS provides a wealth of protocol standards for
communicating with all components and parties involved in
spacecraft operations [18]. These standards cover all layers
of the OSI model, and there are usually several options per
layer [19]. The protocols mentioned in this work are the
Space Data Link Security (SDLS) for the data link layer,
which also implements a security extension [20], and the
Space Packet Protocol (SPP) for the network layer. Note that
the CCSDS collection is more comparable to the collection
of all network protocols commonly used on the Internet
rather than a specific protocol. In the following, we refer
to the collection of CCSDS protocols as CCSDS protocol.

3. Satellite Firmware Threats

We now propose a taxonomy of firmware threats against
satellites as a three-layer representation shown in Figure 3.
The figure summarizes our satellite firmware threat insights
to provide a compact and functional overview. Previous
work by Falco and Boschetti [21] provides a broad taxon-
omy of general threats against satellites, including environ-
mental, physical, and digital-cyber-technical risks. The latter
serves as our high-level attacker goals such that our works
integrate well with their taxonomy. Note that their work
provides a more abstract, high-level taxonomy, while ours
focuses on detailed technical threats to satellite firmware.

3.1. Threat Taxonomy

Our taxonomy, visualized in Figure 3, includes three
layers, which we describe using a top-down approach. On
the highest layer, the control layer, we find the ultimate at-
tacker goals. To achieve them, the attacker must target some
component that represents a functional satellite component
(cf. Section 2.2) on the components layer. To communicate
with a component, an attacker must first access one of the
interfaces that reside on the interface layer and manage
interactions between components and external actors, such
as the GS.

We use solid lines to describe the hierarchy of elements
(i.e., the bus is part of the satellite, and the CDHS is part
of the bus, cf. Figure 3) and a set of dot-lined arrows to
describe attacks paths (i.e., an attacker has to access the
COM before issuing a telecommand in the CDHS). We use
colors corresponding to the different layers of Figure 3.

3.1.1. Control Layer. We model the high-level attacker
goals against the Satellite based on the final digital-cyber-
technical risks Falco and Boschetti identified [21]. Then,
we identify intermediate goals an attacker must achieve
towards their final goal and differentiate between two target
components, the Bus and the Payload . Recall that the bus
controls the payload, thus allowing to achieve goals on the
payload from the bus, but not vice-versa. This separation of
bus and payload is commonly found in satellites, originating
from safety concerns to prevent payload equipment faults
from propagating. In the following, we elaborate the attacker
goals and how they concern the bus-payload separation.

Denial of Service/Control. Denial of Service (DoS)
is the most common attack vector on satellites today [22]
and threatens a satellite’s availability. It can be achieved
both on the bus and payload, which deploys the equipment
for the satellite’s service. Contrary, a denial of control can
only be achieved through the bus.

Malicious Data Interaction. Attackers may want
to extract or manipulate satellite data targeting the bus or
payload. Control data interaction concerns flight-critical
data and access protection secrets on the bus, requiring a
compromised bus. Payload data, on the other hand, can be
accessed from the payload, e.g., data from cameras or other
experiments in the payload.

Seizure of Control. Last, attackers may want to
seize full control over the satellite. Usually, the TCs offered
by the bus are not sufficient to execute arbitrary actions but
rather provide a set of pre-defined interactions, prompting
the need to find a vulnerability granting arbitrary code
execution on the bus.

A seizure of control is not only problematic for the satel-
lite’s owners, but has potentially devastating consequences
on the entire space ecosystem. If the satellite deploys
thrusters, attackers could attempt to invoke the Kessler Syn-
drome, an effect in which the debris from one satellite crash
collide with other satellites, destroying them and emitting
new debris, resulting in a chain reaction. These debris could
potentially make space inaccessible for decades, as shown
in simulations [23], [24]. These potential consequences of
a single successful satellite hack are largely ignored by the
security community, even though they could heavily affect
spaceflight as we know it.

3.1.2. Components Layer. The components layer consists
of the relevant common satellite components (cf. Sec-
tion 2.2), the Bus-Payload Link, and the Untrusted Data
Handling System (UDHS). In practice, these components
can be separate hardware components or be combined in a
single firmware image. Here, we divide them by function.

4

• Seizure of Control
• Denial of Service/Control
• Malicious Data Interaction

Satellite

• Arbitrary Code Execution

• Control Data Interaction

Bus
• Denial of Service

• Payload Data Interaction

Payload

Link TC Fetcher

• Vuln. TC Interface
• Critical TC Interface
• Link Suppression
• Payload Data Leak

Bus-Payload Link

TC Fetcher

• Vulnerable TCs
• Dangerous TCs
• TC Suppression
• Control Data Leak

CDHS

COM Rx

• Bypass Access Control

COM

PD Fetcher

• Vuln. Data Processing
• Dangerous Payload Cmd.
• Payload Service Denial
• Service Info Leak

PDHS

UD Fetcher

• Escape to PDHS

• Side Channel Attacks

UDHS

PLCOM Rx

• Bypass Access Control

PLCOM

<Data> Fetcher
<External> Rx

InterfacesAttack Path Hierarchy

Figure 3: A taxonomy of threats against satellite firmware

In the following, we discuss each component, its task,
and the threats against it. We categorize threats by the three
well-known pillars of security – Integrity (1), Availability
(3), and Confidentiality (4). Additionally, we consider Sta-
bility (2) as a sub-category of Integrity to describe threats
that exist by design in a satellite but risk the satellite’s
operational integrity if accessible to attackers.

COM / PLCOM . The COM receives incoming
TCs over a remote channel (i.e., a radio), while the PLCOM
either receives payload data or TCs intended for the payload.
As we consider only attacks against the satellite firmware,
we summarize threats against the (PL)COM as bypassing
access control. This includes general radio frequency threats
such as Man-in-the-Middle attacks and cryptographic threats
like timing side-channels, which previous work explored in
detail [25], [26]. Additionally, this includes threats targeting
the microcode demodulating or decoding TCs.

CDHS . The CDHS handles incoming TCs by ex-
ecuting the associated function in the satellite’s firmware
that performs a direct or scheduled action on the satellite
(cf. Section 2.2). It must fulfill the following requirements:

(1) Integrity: Vulnerable TCs can allow an attacker to
access private data, hijack the control flow, or leak informa-
tion. This also includes all memory corruption vulnerabil-
ities in handling TCs, e.g., buffer overflows, format string
vulnerabilities, or use-after-free vulnerabilities [27].

(2) Stability: Some overly permissive dangerous TCs can
enable an attacker to take over the satellite’s access control,
firmware update mechanism, control flow, or critical data
simply by issuing the respective TC. Such TCs often exist
for debugging purposes. TCs that provide arbitrary memory
write gadgets (e.g., for debugging) or arbitrary changes to
access control secrets should not be implemented, while
access to the firmware image should require an additional
layer of verification (e.g., signed images), which is generally
advisable and called defense in depth [28].

(3) Availability: The handling of TCs must be avail-
able at all times for time-critical actions such as course
corrections. We summarize all threats against the CDHS
availability as TC suppression threats as they suppress the
satellite’s ability to handle TCs.

(4) Confidentiality: TCs may allow an attacker to leak
secrets, e.g., concerning access control, and thereby compro-

mise the entire satellite if this leak allows elevated access.
We summarize control data leaks as threats against the
CDHS’ confidentiality.

Bus-Payload Link . The Bus-Payload Link provides
a bridge for the payload to interact with the bus. This is
necessary as the payload may need access to monitoring
and control capabilities of the bus to control the payload.
These functions vary depending on the mission and payload,
but may include options to toggle power to payload compo-
nents. Hence, the link provides an API-like surface between
different layers of trust.

(1) Integrity: The link does not deploy own TCs but uses
the ones from the CDHS through TC interfaces. These API-
like interfaces can be vulnerable akin to vulnerable TCs,
which we classify as vulnerable TC interfaces.

(2) Stability: Critical TC Interfaces can compromise the
bus by deliberately offering overly permissive command
functionality to the (potentially compromised) payload. Crit-
ical TCs include unlimited power management or adjusting
the satellite’s attitude to make radio communication impos-
sible. Commands issued by the payload should only impact
payload equipment and must be reversible at any point
by the bus. The difference between critical and dangerous
TCs is that critical TCs offer functionalities that should be
exclusive to the bus while dangerous TCs should either not
exist at all (even on the bus) or must require additional
authentication/verification.

(3) Availability: If more than one PDHS or UDHS exists,
none of them should be able to deny the link’s availability
to the others. As such, we identify link suppression as threat
to the link between connected payload components.

(4) Confidentiality: The link is compromised if payload
components can extract information intended exclusively for
other payload components. We summarize these as payload
data leaks.

PDHS . The PDHS is the payload’s data processing
system and, depending on the missions, acts as a payload
command system with packets from the PLCOM. As such,
the system exercises immediate control over the payload
functionalities or is involved in processing untrusted data
from the user segment (cf. Section 2.1). In general, as the
PDHS can deploy any computing task, especially when
processing untrusted payload user traffic, the threat scenario

5

shifts towards common system security threats, leaving the
following categories intentionally vague.

(1) Integrity: We summarize all classical software vul-
nerability threats akin to vulnerable TCs as vulnerable data
processing.

(2) Stability: This is only a concern if the PDHS handles
command traffic similar to the CDHS for the payload. In this
case, we identify the dangerous payload command threat
category, similar to dangerous TCs.

(3) Availability: The PDHS availability is threatened if
the ability to process incoming packets is inhibited, leading
to a denial of the payload service. Hence, we call this a
payload service denial.

(4) Confidentiality: We identify general service informa-
tion leaks as threats against the PDHS’ confidentiality.

UDHS . The UDHS runs untrusted code of payload
users directly on the satellite. Since the code is untrusted,
it must be isolated from regular payload operations on
the PDHS. This component is not part of the common
satellite architecture (cf. Section 2.2), but with the trend
towards renting satellite capabilities and considerations to
build orbital cloud computing services [29], [30], it is time
to consider this component. In practice, we found this
component deployed in our case studies in Section 5.2.

The PDHS and UDHS have a special relationship in our
taxonomy. First, an UDHS can be part of a PDHS (i.e., the
PDHS runs an operating system, where one isolated process
runs untrusted code), where the same environment also runs
the payload data processing. Second, a PDHS can be part of
a UDHS, i.e., the UDHS deploys an (untrusted) application
that processes data from receiving components. From an
attacker’s perspective, the parsing application deployed by
the UDHS acts as PDHS. We call this UDHS-wrapped
PDHS the UDHS-PDHS. From an attack path perspective,
the UDHS-PDHS is still isolated, making it different from
the main PDHS while facing the same threats as the PDHS.
We highlight an example of this mechanism in Section 5.2.

(1) Integrity + (2) Stability: The UDHS’ integrity is
threatened if the environment isolation is attacked, which
we call Escape to PDHS threats.

(3) Availability: We do not consider UDHS availability
threats, as only a UDHS-PDHS has availability obligations.

(4) Confidentiality: Extracting information from the iso-
lated host environment threatens the UDHS’ confidentiality,
which we summarize as side channel attacks.

3.1.3. Interface Layer. Interfaces form the third and lowest
layer of our taxonomy. Whenever a component interacts
which another component or an external source, an interface
is used in between. We distinguish between two types of
interfaces, external interfaces that interface a component
with an external element (i.e., the GS) and internal inter-
faces that act as data interfaces and, hence, are called Data
Fetchers, where we replace the word Data with a more
precise description like TC if applicable. Every interface
has exactly one parent, e.g., the parent of COM Rx is COM.
However, a component may have multiple interfaces, e.g.,
the CDHS may have two different TC fetchers for the COM

and Bus-Payload Link. In Figure 3, we omit the arrows
between interfaces and components for simplicity, but every
interface has a hierarchy line to the parent and a dot-lined
attack path arrow from the interface to the component.

External Rx . External interfaces receive data from
outside the satellite (i.e., radios or optical receivers). We
omit threat considerations since, in our model, these in-
terfaces only implement purely hardware-based operations
without software and would only be subject to electro-
magnetic and radio frequency threats. If the satellite uses
firmware, i.e., in the form of microcodes to perform signal
demodulation, we consider this to be part of the COM
as exploitation might potentially yield a bypass to access
control. Hence, we only consider this interface to model our
attackers, as we detail in Section 4. In addition, we solely
consider receivers of structured data that some component
parses. For example, scientific equipment to measure radi-
ation or a thermometer cannot receive bit-exact structured
data, excluding them from our considerations.

Data Fetcher . Internal interfaces manage the inter-
actions between two components. We call these interfaces
data fetchers as they internally fetch data from one compo-
nent and provide it to their parent. Since they only receive
traffic from components and forward it to their parent,
they only face (1) Integrity and (3) Availability threats. No
distinction between stability and integrity can be made, and
compromising confidentiality requires a return channel.

(1) Integrity + (2) Stability: An attacker may desire to
manipulate existing data by injecting new or altering existing
data. As such, data injection and data alteration are threats
to the integrity of data fetchers. For example, the TC Fetcher
interface is compromised if an attacker manages to inject an
additional TC, although only one was sent.

(3) Availability: An attacker may compromise the inter-
face’s ability to pass all incoming data packets to its parent.
Since memory is often limited, these interfaces usually use a
ring-buffer that swaps out older packets for newer packets.
By flooding the buffer and continuously rotating not-yet-
processed packets out, the interface is compromised (data
flooding threat). In addition, the data fetcher’s forwarding
ability can be inhibited in some way (other than overwhelm-
ing), which we call forward suppression threat.

3.2. Deriving Satellite-specific Insights

Our taxonomy in Figure 3 highlights not only threats but
also attack paths and all computing components found on a
satellite. Hence, our taxonomy is functional and allows us to
derive satellite-specific models that enumerate all possible
attack trees and the full attack surface. In the following, we
first describe how to derive a satellite-specific model, which
we also use for all three case studies (cf. Section 5). Then,
we explain how all attack trees and attacker surfaces can be
extracted from this model.

3.2.1. Deriving a Satellite-specific Model. Before a
satellite-specific model (subsequently abbreviated as model)
can be derived from our taxonomy for a specific satellite, we

6

stress that a crucial prerequisite is a sufficient understanding
of the satellite’s internals (either through documentation or
reverse engineering). Then, the model can be derived in two
steps: First, we match the components to the actual satellite
components. Second, we match the interfaces between these
components to model the real-world interactions of the
components in the satellite.

In detail, when matching components, each component
in the component layer can be duplicated or removed to
match the concrete satellite requirements. For example, if
a satellite does not have a PDHS or UDHS, both (as well
as the Bus-Payload Link) can be removed, leaving only the
COM and CDHS. If the satellite has multiple PLCOM com-
ponents, we duplicate the PLCOM component while keeping
the hierarchy line and attack path arrow for each individual
COM. Notably, no new components can be created, only
existing taxonomy components can be duplicated.

Next, the interfaces are matched to the components.
Each component initially comes with its own interface (cf.
Figure 3). However, as each interface can only have a
single parent but multiple children, multiple interfaces can
be shared as receiving interfaces for a single component.
For example, the CDHS can use the same TC Fetcher for
multiple COMs, i.e., if there are active redundant COMs.

3.2.2. Extracting the Attack Tree and Surface. After
deriving this model, the dotted attack path arrows form
a directed graph. In Section 4, we discuss our attackers
in accordance with our interfaces, where each attacker is
connected to an interface, making these attacker-connected
interfaces. The combination of all attacker-connected inter-
faces forms the attack surface. By following all possible
paths from an attacker-connected interface to an element of
the control layer, we can extract all possible attack paths,
where each path is a subgraph of our attack tree.

In our case studies, we use this attack tree representation
as it provides a more intuitive representation of the security
aspects for a specific satellite.

4. Attacker Model

Using our taxonomy of threats against satellite firmware,
we formulate four attacker models, accounting both for the
attacker’s knowledge and level of access.

4.1. Attacker Knowledge

In a first step, we review a prevailing but outdated
assumption that needs to be revised.

Security by Obscurity. For decades, the satellite
community and developers have acted as gatekeepers for the
topic of satellite security [15]. By keeping the software and
components of satellites under lock, they created a “barrier
of obscurity” that prevented any meaningful research on this
subject. Hence, external communities had no way to study
satellite internals and potential security issues.

In recent years, this changed as the developments in the
space domain have moved towards COTS components [15],

[31], open satellite designs [7], [32], and open-source li-
braries [33]. These factors have been multiplied by the
explosive growth in the number of satellites [4] and the
inherent increase in the size of the community. Hence,
the number of people holding knowledge about satellites
steadily increases. Overall, we argue that a transformation
is slowly happening concerning the effectiveness of security
by obscurity in space-borne assets.

Revised Assumption. As a result, we must assume
that attackers have detailed knowledge of the target satellite,
including detailed documentation and access to firmware im-
ages. Further, several open-source satellites already enable
attackers to study satellites [34]–[36]. We therefore assume
attackers have detailed knowledge of satellites, including
their firmware, except for cryptographic secrets.

4.2. Attacker Access Level

We also adjust a common misconception regarding the
attacker’s access level to the space segment.

Myth of Inaccessibility. Until recently, it was gen-
erally assumed that satellites always communicate with
prohibitively expensive GSs. As a result, only few actors
could attack a satellite (similar to the assumption for mobile
cell phone networks many years ago). This assumption had
a major impact on the adaptation of security features in
satellites [15]. However, GS prices have dropped signifi-
cantly in the past few years. Today, it is possible to create
a fully functional GS for less than $10k [37], and there are
open-source communities around developing GSs [38]. In
addition, GSaaS providers such as Amazon Web Services or
Microsoft Azure rent a GS to the user [9], [10] or allow
GS owners to monetize unused GS capacity by temporarily
renting it to end users. As a result, one does not even need to
own GS equipment to interact with satellites. Additionally,
transceivers for specific satellite services have become so
compact and cheap that they can be found in consumer
electronics, such as the iPhone 14 [39]. Furthermore, there
are now many LEO satellite constellations in space with
satellite-to-satellite communication capability. At the same
time, there is an increasing number of smaller research
LEO satellites. There are already a number of satellites with
significant communication capabilities in space that are even
intended to be used by third parties [32].

Revised Assumption. Therefore, we believe that
there is a paradigm shift in the assumption that satellites
are inaccessible, which is particularly pronounced for LEO
satellites. Consequently, we divide attackers into external
attackers, payload users, payload service hosters, and op-
erators based on their association with the satellite.

4.3. Attacker Models

In the following, we describe the attacker models while
considering our revised assumptions. In addition, we con-
nect each attacker to an interface from our taxonomy pre-
sented in Section 3.1.3.

7

<External> Rx

(a) External Attackers commu-
nicate with the satellite using a
custom GS and ISL

PD Fetcher

(b) Payload Service Attackers
interact with the satellite’s pay-
load data handling

UD Fetcher

(c) Malicious Service Hosters
execute untrusted code on the
isolated UDHS

TC Fetcher

(d) Semi-Privileged Insiders use
elevated privileges to issue non-
critical TCs

Figure 4: Our attacker models vary in their ability to interact with the target satellite to use all potential satellite interactions.

4.3.1. External Attackers. An external attacker, as shown
in Figure 4a, can use a custom GS or a custom satellite
to interact with the target satellite. As such, external at-
tackers can send arbitrary traffic to any interface receiving
external traffic while also receiving any response. Hence,
in our taxonomy, external attackers can interact with every
External Rx interface. We can distinguish between two
types of external attackers.

Custom Ground Station Attacker. Communication
with the GS is a satellite’s primary command-and-control
channel. Even if this channel is protected via access control
mechanisms, an attacker may be able to bypass access
control, which we identified as the primary threat to COM
components (cf. Section 3.1.2). To this end, we propose a
custom GS attacker that can communicate with the target
satellite through any GS except the one used by the satellite
operators, as it may contain access control secrets. We
further assume that attackers have the required knowledge to
establish a radio connection, i.e., frequencies, modulations,
and orbital position, except for the aforementioned secrets.

ISL Attacker. In addition to custom GS access,
we assume that an external attacker has access to custom
satellites to communicate with external receiving interfaces
over ISL connections (cf. Section 2.1).

4.3.2. Malicious Payload Users. Payload users are ac-
tors of the user segment (cf. Section 2.1) and are meant
to interact with the satellite through the satellite payload.
Payload service attackers use a pre-defined service offered
by the satellite, usually using a small antenna provided
by the satellite’s service provider, as shown in Figure 4b.
Further, the traffic emitted by the attacker must be processed
onboard the satellite, i.e., by parsing it, and is received on
the Payload Data (PD) Fetcher interface. Additionally, we
summarize attackers that have successfully compromised the
payload, e.g., through the PDHS as payload attackers. They
interact with the bus using the Link TC Fetcher interface
that allows them to potentially escalate the attack from the
payload to the bus.

4.3.3. Malicious Payload Service Hoster. These hosters
hold the ability to host a custom service on the payload, i.e.,
by uploading untrusted code. The untrusted service of this
user is executed on the UDHS. Consequently, the attacker
has access to the UDHS to upload, update, or modify the

service using the Untrusted Data (UD) Fetcher interface, as
shown in Figure 4c.

4.3.4. Operators. Operators control the satellite’s opera-
tions and exercise full control over the satellite as they issue
commands over the TC Fetcher interface. While we do not
consider attacks by fully privileged operators, we argue that
operators are often divided into fully privileged and semi-
privileged operators. This may apply to any sufficiently
large group of operators where responsibilities and access
privileges are separated. This scenario becomes more likely
through the Satellite as a Service (SataaS) model, where
access to a satellite is rented to untrusted third parties.
In such scenarios, the untrusted parties might interact in
a limited way, e.g., turn the payload on or off, prompting
privilege escalation concerns.

Semi-Privileged Insider. A semi-privileged posi-
tion, shown in Figure 4d, allows attackers to interact using
non-critical TCs, e.g., to request telemetry or to manage non-
vital payload systems. Hence, this attacker interacts with
the satellite while confined, e.g., through ground-controlled
upload restrictions. While this attacker’s communication is
accepted by the satellite’s access control mechanism, the
attacker does not have direct access to the cryptographic
secrets.

5. Case Studies

We demonstrate the real-world applicability of our tax-
onomy and attacker models by analyzing three different
satellites in detail. For each, we first conduct a technical
analysis of the satellite’s components, which we use to
derive a satellite-specific threat model using our taxonomy
as described in Section 3. Table 1 provides an overview
of the analyzed satellites including key data. Then, we
analyze the security of the satellites’ firmware and Table 2
summarizes the main results. We find that each satellite is
affected and successfully uncover multiple vulnerabilities.
For two of the case studies, we experimentally verify the
exploitability of our identified vulnerabilities and achieved
arbitrary code execution on the CDHS, providing an attacker
with full control over the satellite, which, to our knowledge,
was never done before.

Satellite Analysis Challenges. During our analysis, we
identified four key challenges that make the analysis diffi-

8

TABLE 1: Overview of the analyzed satellites and identified vulnerabilities.

Satellite Orbit Form Launch OBC TCs Strongest Attack Path

ESTCube-1 665 km 1U CubeSat 2013 ARM Cortex-M3 Unprotected External Attacker −→ Seizure of Control
OPS-SAT 515 km 3U CubeSat 2019 AVR32 AT32UC3 Unprotected External Attacker −→ Seizure of Control
Flying Laptop 600 km 60x70x90 cm 2017 Leon3 SPARC V8 Encrypted Semi-Privileged Insider −→ TC Alteration

cult: (i) Satellites notoriously use a large variety of Instruc-
tion Set Architectures (ISAs) due to the versatile require-
ments of different satellites. In our survey (cf. Section 6),
we found that 17 different satellites used eight different
ISAs. This became an issue for OPS-SAT , as the AVR32
ISA barely has any support in analysis tools. (ii) Satellite
firmware analysis is challenging due to the plethora of soft-
ware components that are often custom-made for the satel-
lites. Thus, documentation is typically lacking, and reverse
engineering is time-consuming. (iii) Due to the large number
of components connected to the CDHS, code paths can be
hard to follow since potential interrupt sources from external
devices can only be guessed. The RTOS design principle of
data queues makes this even harder, as following a data
flow is more challenging than following a well-referenced
program flow. (iv) Space-domain specific protocols, such as
the CCSDS family, are likely unfamiliar to most security
analysts reversing satellite firmware, requiring more effort
to study these protocols.

We conclude that the entry barrier to conducting security
research is high, as several unique challenges exist.

Overview. At first glance, it might seem interesting to
start with a case study on a large satellite in the GEO.
However, the complexity of these large satellites makes
them extremely challenging to study and hinders under-
standing security-relevant details. Hence, we first focus on
the university-developed satellite ESTCube-1, for which we
assume that the satellite’s complexity is manageable.

As a second case study, we looked for a more complex
satellite and found an ideal example in the OPS-SAT . Not
only is the European Space Agency (ESA) involved in the
development—which already contributes the knowledge of
a major space agency—but the satellite is also an open
research platform leading to an interesting attacker model.

Finally, we aimed for an even larger and more complex
satellite. Here, Flying Laptop is a perfect example, as its
FPGA-based computing setup works similarly to even much
more complex satellites.

Analysis Scope. During our analysis, we focus on
the OBSW in the CDHS, as attackers can use this module
to gain full control of the satellite. In the OBSW, we focus
on the TC/TM data channel, as it is the primary attack
surface. Thus, we analyze incoming packet parsing, then
follow the handling of the TCs before they are executed, and
the actual execution of TCs. We also analyze the effects of
notable TCs and searched for vulnerabilities in them. Note
that all functionalities and vulnerabilities in the following
case studies are in active use on the satellite unless we state
otherwise.

Analysis Method. We used IDA Pro and Ghidra as
tools during our analysis. Our initial analysis was manual
and mainly involved reverse engineering of firmware bi-
naries, where we analyzed the data flow from the COM
systems to telecommand processing. We thereby manu-
ally reviewed and investigated the code for security is-
sues. Additionally, we searched for references to functions
prone to causing memory corruptions, such as memcpy
and strcat. Finally, we used coverage-guided fuzzing
through firmware re-hosting for ESTCube-1 using Fuzzware
by Scharnowski et al. [40].

Coordinated Disclosure. We responsibly disclosed our
findings in a coordinated way to the respective satellite
developers and GomSpace, a space SDK developer, while
offering our help to solve problems. The ESTCube-1 team
already confirmed that they will fix the issues in the upcom-
ing ESTCube-2. The teams of OPS-SAT , Flying Laptop, and
GomSpace acknowledged that they received our reports but
did not disclose further details or follow up on any of our
subsequent requests.

Fixing Satellite Vulnerabilities. Estimating how
long it takes to patch vulnerabilities is generally challenging,
as it depends on the complexity of the underlying problem.
Additionally, satellites face the unique challenge of having
to upload a patched firmware. The ESTCube-1 team told
us that uploading a firmware image generally takes several
days to a week, depending on the GS and link quality. This
stems from the low bandwidth of UHF/VHF components
(i.e., 9600 bit/s) and shared bandwidths.

5.1. ESTCube-1

ESTCube-1 was Estonia’s first satellite. It was devel-
oped by the University of Tartau in collaboration with the
German Aerospace Center (DLR). The satellite was a 1U
CubeSat in LEO and was decommissioned in 2015 while
remaining in orbit. The primary purpose of the satellite was
to demonstrate a novel propulsion method called the electric
solar sail [42]. The secondary objective of the satellite was
Earth observation on the visible spectrum. The satellite’s
second generation will launch in January 2023 and shares
the majority of software components with ESTCube-1. Thus,
only components specific to the new mission are developed

CDHS
COM

S-Band Tx

EPS

ADCS

Solar Sail Camera

Figure 5: General overview of the ESTCube-1 components

9

TABLE 2: Overview of vulnerabilities identified in the satellite firmware images. We only name the weakest (least-privileged)
attacker model applicable. Experimentally Tested indicates whether we tested and confirmed this vulnerability.

Id Satellite Vulnerability Attacker Attack Surface Outcome Exploitable Exp. Tested

1 ESTCube-1 Bypass Access Control External Attacker COM Rx Arbitrary TCs ✓ ✓

2 ESTCube-1 Dangerous TC External Attacker COM Rx Arb. Code Exec. ✓ ✓

3 ESTCube-1 Control Data Leak External Attacker COM Rx Info Leak ✓ ✓

4 OPS-SAT Bypass Access Control External Attacker COM Rx Arbitrary TCs ✓ ✓

5 OPS-SAT Dangerous TC External Attacker COM Rx Arb. Code Exec. ✓ -
6 OPS-SAT Critical TC Interfaces Mal. Payload User Link TC Fetcher Arbitrary TCs ✓ -
7 OPS-SAT TC Injection Mal. Payload User Link TC Fetcher TC Injection ✓ -
8 OPS-SAT Vulnerable Library None None Arb. Code Exec ✗a ✓

9 OPS-SAT Vulnerable TC External Attacker COM Rx Arb. Code Exec ✓ ✓

10 Flying Laptop Missing TC Authentication External Attacker COM Rx Arb. Code Exec ?b -
11 Flying Laptop Dangerous TC Fully-Priv. Insiderc TC Fetcher Arbitrary TCs ✓ -
12 Flying Laptop Trusted Size Field Semi-Priv. Insider TC Fetcher TC Alteration ✓ -
13 Flying Laptop Inconsistent Size Field Semi-Priv. Insider TC Fetcher TC Alteration ✓ -
a The vulnerable library function is not called in the analyzed satellite, but this library is also used by roughly 75 spacecraft and NASA [41].
b The encryption only ensures confidentiality but not integrity, allowing for ciphertext-only-based modifications.
c Only fully-privileged insiders could abuse this, which we do not consider (cf. Section 4.3.4). Alternatively, an external attacker bypassing the

access protection may also exploit this.

from scratch, which implies that the following results are
likely to impact ESTCube-2 as well.

5.1.1. Technical Analysis. Figure 5 shows an overview
of the ESTCube-1, which deploys two custom payload
components [7]. The satellite’s design is rather simple,
as all components are directly controlled by the CDHS
without a dedicated PDHS. The CDHS uses a redundant
STM32F103VF ARM OBC with a FreeRTOS based OBSW.

The TC/TM traffic processed by the CDHS is received
over the COM, which contains multiple antennas. One Ultra
High Frequency (UHF) antenna is used for TC/TM traffic
with the GS, and a different antenna listens on Very High
Frequency (VHF) for an emergency reset signal. Addition-
ally, there is an S-band antenna to downlink image data
from the camera. Notably, the design of the COM includes
no access protection or encryption mechanisms.

Internal Communication Protocol. ESTCube-1
components use the custom Internal Communication Proto-
col (ICP) to communicate with the CDHS and the GS. The
protocol does not use any security measures, such as encryp-
tion or authentication, and is designed to be straightforward.
It uses a simple address scheme, where each component,
including the GS, has an ID (e.g., GS ∧

= 5, and CDHS ∧
= 2).

When parsing the packet in the CDHS, the ICP payload is
used as TC packet and forwarded to the command scheduler,
which eventually executes the command. Ultimately, the
protocol presents a minimal solution to send ordered packets
within a small mesh network of components.

5.1.2. Threat Model. Figure 6 displays the threat model de-
rived from our taxonomy (cf. Section 3), including the vul-
nerabilities that we identified. Since the satellite’s payload
does not offer a PDHS or external receivers for structured
data, the threat model only includes the bus. The S-Band

antenna is not included as it is only used for transmission.
ESTCube-1’s attack surface is defined through the interfaces.
Hence, only external attackers with a custom GS against the
COM Rx and semi-privileged operators connected to the TC
Fetcher are relevant (cf. Section 4.3).

Experimental Setup. We rebuilt (parts of) the satel-
lite in our lab to test our results experimentally. We recreated
the satellite’s CDHS hardware using the same STM32 mi-
crocontroller on a breakout board with a J-Link debugger
probe. Further, we connected the satellite to actuators repre-
senting the payload control functionalities. This setup runs
the OBSW unmodified on the same hardware. Additionally,
we connected a speaker to the port usually occupied by the
Solar Sail (cf. Section 5.1.1). Building an exploit playing
sound proves that we can control this (or any) port.

5.1.3. Security Analysis. We summarize our main findings.
Unsecured Telecommand Access. The most striking

issue of ESTCube-1 is the missing TC encryption and au-
thentication, which results in a trivial access control bypass
(cf. Section 3) on the COM. During the active commission
of the satellite, external attackers with a custom GS could
have issued arbitrary commands to the satellite.

Unfortunately, there seems to be no trivial fix, as the
employed ICP protocol would have to be extended to al-
low for cryptographically secured interactions. This reveals
the problem of using custom protocols for security-critical
applications. Even when assuming that access protection is

COM Rx
• Bypass Access Control

COM

TC Fetcher

• Dangerous TCs
• Control Data Leak

CDHS
• Seizure of Control

Satellite

• Arbitrary Code Execution

Bus

Figure 6: ESTCube-1 threat model and vulnerabilities

10

in place, it would be a single point of failure due to the
subsequently discussed dangerous TC.

Insecure-by-design TCs. Even with no access pro-
tection, a satellite should be designed so that TCs do not
compromise the satellite’s stability without further valida-
tion, as outlined in Section 3. Here, two specific TCs allow
arbitrary reading and writing of memory. On the technical
level, the attacker controls all parameters passed to memcpy
through command arguments, such that these two TCs are
dangerous TCs. Anyone with a custom GS could utilize
them to gain remote code execution and seize control of
the satellite.

Noteworthy, the ability to execute arbitrary code would
allow an attacker to write firmware updates to the flash
memory persistently, making the takeover irreversible. Other
than modern operating systems such as Linux or Windows,
which deploy defenses to prevent trivial exploitation of such
vulnerabilities, the RTOS in ESTCube-1 does not feature any
such protections. In particular, neither ASLR nor stack cook-
ies are used. To prove the impact of this vulnerability, we
build an exploit, send our payload over the COM interface
of our rebuilt satellite in the lab, and execute arbitrary code
(in our case, we play sound over the connected speaker).

Trusted ICP Size Field. Upon receiving an ICP
packet, the packet is passed through a FreeRTOS data queue
to the command scheduler, which executes the associated
command using the included arguments. We observed that
a function parsing the command structure does not validate
the “length of arguments” field against the total length of
the ICP packet or payload. Thus, any external attacker can
specify a malicious length field, which indicates that the
arguments would be longer than they actually are. This
causes a command handler function to use more bytes from
the heap memory than intended, leading to a buffer overread.
Hence, an attacker can include other data in the attacker-TC,
which leads to a control data leak (cf. Section 3.1.2). Again,
we verify that this works on the real satellite by testing
it on our recreated hardware and manage to successfully
exploit this vulnerability. The leak itself is reliable and is
not impacted by environmental conditions, but extracting
specific secrets depends on the heap layout. Noteworthy,
this vulnerability is similar to the well-known OpenSSL
Heartbleed vulnerability [43].

5.2. OPS-SAT

OPS-SAT is the first CubeSat directly operated by ESA.
The satellite was developed by the Graz University of Tech-
nology, launched in 2019 into LEO, and remains in active
use. The satellite offers a versatile platform to run scien-
tific experiments and technology demonstrations. Notably,
people independent of ESA and without specific satellite
knowledge can develop experiments through a dedicated
open-source framework [44], [45]. Hence, the satellite pro-
vides a rare scenario with untrusted third parties performing
experiments, which may become more widespread in the
future as SataaS becomes more prevailing [46], [47]. Thus,
OPS-SAT is an excellent case study to research this threat

CDHS
COM

GPS

EPS

ADCS

Opt. Rx
SEPP

CCSDS -
Engine

X-Band Tx

S-Band

Fine ADCS

SDR Camera

Figure 7: Overview of the OPS-SAT components

scenario early on. Curiously, OPS-SAT was subject to a
recent security competition. There, the satellite bus was
considered off-limits, likely due to the criticality of potential
exploitation, underlining the impact of our findings [48].

5.2.1. Technical Analysis. OPS-SAT is split into a satellite
bus and payload according to our reference satellite model
(cf. Section 2.2), where the payload deploys the experiments
and related devices. Figure 7 highlights the most notable
parts and a simplified version of their connections.

Satellite Payload. The satellite payload in the lower
part of Figure 7 is centered around the cold-redundant
Satellite Experimental Processing Platform (SEPP), which
provides a dual-core ARM Cortex A9 processor. Further,
the SEPP is connected to a Software-Defined Radio (SDR),
a camera, and fine adjustable ADCS, which is required
for the optical receiver (Opt. Rx). Additionally, the payload
deploys an S-Band radio transceiver for high-bandwidth data
transmits and an X-band transmitter for higher bandwidth
downlinks. The traffic from these radios is handled through
the CCSDS engine, which implements CCSDS hardware
decoding in a Field-Programmable Gate Array (FPGA) con-
nected to the OBC and the SEPP.

Satellite Bus. The satellite bus in the upper part of
Figure 7 has a common satellite bus design and is centered
around redundant NanoMind A3200 OBCs [49]. The COM
deploys a UHF/VHF radio to communicate with the GS.

The OBSW uses the FreeRTOS v8.2.1 RTOS and is
built using the GomSpace NanoMind SDK, which provides
hardware abstractions and common functionalities, such as
file system access and a parameter database. To process
TCs from the COM, the Cubesat Space Protocol (CSP)—
implemented in the open-source library libCSP—is used.
The protocol is commonly used for small satellites due to
the minimal network protocol. The CSP is thereby used to
transmit the SPP, which in turn contains the telecommand
data. Additionally, the OBSW can also receive SPP-wrapped
TCs from the CCSDS engine and the SEPP.

5.2.2. Threat Model. Figure 8 presents the threat model
for OPS-SAT based on our threat taxonomy (cf. Section 3).
The CDHS features two TC Fetchers, one over an I2C bus
connected to the UHF/VHF COM and one connected over
a Controller Area Network (CAN) bus to the S-Band COM,
which features a CCSDS engine represented by the S-Band
COM box. The CAN - TC Fetcher also receives the TCs
from the payload.

11

Satellite
Bus Payload

PDHS
PD Fetcher

UDHS
UD Fetcher

UDHS-PDHS
UD-PD Fetcher

S-Band PLCOM

PLCOM Rx

SDR PLCOM

SDR Rx

Optical PLCOM

Optical Rx

CDHS
UHF - TC Fetcher CAN - TC Fetcher

COM Rx
COM Bus-Pl. Link

Link TC Fetcher

S-Band COM

S-Band Rx

Figure 8: The OPS-SAT threat model

The payload features a PDHS, which is called SEPP
on OPS-SAT . This PDHS deploys an UDHS to run un-
trusted scientific experiment applications in an isolated en-
vironment. As described in Section 3.1.2, the environment
running the scientific application is the UDHS, whilst the
application itself is modeled as nested PDHS (the UDHS-
PDHS). Finally, all components in the payload have ac-
cess to the S-Band PLCOM, which is physically the same
CCSDS-engine connected radio as the S-Band COM, and
they have additional access to a SDR (SDR PLCOM) and
the optical receiver Opt. PLCOM.

Hence, OPS-SAT exposes a considerable attack surface
through the abundance of communication options. All at-
tackers described in Section 4.3 are relevant to the security
considerations of OPS-SAT and use the interfaces displayed
in Figure 4, while the UD-PD Fetcher is a PD Fetcher.

5.2.3. Experimental Setup. Since the NanoMind board
used on the real satellite is costly and similar boards are
out of production, we resorted to software-based emulation
and static analysis. To our knowledge, there is no com-
prehensive emulator for this ISA. Hence, we implemented
the AVR32UC3 ISA in QEMU from scratch to provide
us with an accurate testing and evaluation environment 1.
We omitted the emulation of peripherals that physically
interact with the real world, while implementing a minimal-
working version of peripherals involved in the execution of
the CDHS, such as flash memory.

5.2.4. Security Analysis. In the following, we briefly sum-
marize our main findings. Figure 9 presents the vulnerabil-
ities that we identified in the bus. In Figure 9, we omit the
blue satellite box containing the seizure of control capability
and the PD Fetcher interface due to space constraints

Bypass Access Control. OPS-SAT uses the S-Band
radio coupled with the CCSDS engine, which, to our knowl-
edge, decrypts S-band traffic. The COM radio is directly
connected to the OBC, where the OBSW uses the CSP
protocol, which offers eXtended Tiny Encryption Algorithm
(XTEA) encryption and Hash-Based Message Authentica-
tion Codes (HMAC) authentication. However, these capabil-
ities are disabled via a compile-time flag. Hence, the COM
does not offer any protection, and external attackers can
command the satellite by executing arbitrary TCs, which
includes anyone with a custom GS.

1. The source code of our implementation can be found at https://github.
com/CISPA-SysSec/SpaceOdyssey-QEMU-AVR32

• Vulnerable TCs
• Dangerous TCs

CDHS

COM Rx
• Bypass Access Control

COM

Link TC Fetcher
• Critical TC Interfaces

Bus-Payload Link

PD Fetcher
• Escape to PDHS

UDHS

• Arbitrary Code Execution

Bus

UHF - TC Fetcher
• Vuln. Data Processing

PDHSCAN - TC Fetcher
• TC Injection

Figure 9: An overview of the vulnerabilities identified in the
satellite bus and their attacker paths

Another interesting observation is that the COM handles
a larger range of commands than the S-Band antenna, as it
has access to additional command services. The additional
services are the libCSP default handlers (i.e., ping replies,
uptime checks, and reboots), the parameter service for flight
parameter editing, the ADCS server, and a sensor telemetry
service. Hence, the unprotected COM exposes more attack
surface than the protected S-band COM.

Unsecured Software Updates. OPS-SAT uses a
flash file system to store files, including the firmware image.
Existing TCs allow to create new files and write to them,
providing the capability to upload a malicious firmware
image onto the satellite. To change the filesystem path
pointing to the current image, critical commands must be
enabled, which is a global Boolean flag in the satellite’s
settings. Crucially, changing this flag can be done via a TC
that does not require additional verification. Hence, external
attackers can conduct arbitrary firmware updates, which
allows them to seize control over the satellite. Interestingly,
similar critical functionalities are hidden behind the same
flag, indicating that engineers were aware of its critical
importance but decided not to implement further protection.

Critical TC Interfaces. Both the SEPP and the
CCSDS engine (cf. Figure 7), which in Figure 8 are the
PDHS and the S-Band COM + S-Band PLCOM, are con-
nected via the same CAN bus to the CDHS. All packets in
this CAN bus are fetched using the same code in CAN - TC
Fetcher, which does not differentiate between the origin of
these packets. Hence, TC packets coming from the protected
S-Band COM and from the PDHS are processed the same
way, exposing all TCs offered over the S-Band COM also
to the PDHS. This includes the unsecure software update
described before, which leads to a critical TC interface vul-
nerability. Hence, any attacker with control over the PDHS
can issue critical TCs to the CDHS and conduct a malicious
firmware update. Theoretically, attackers are not supposed
to have control over the PDHS, which implements isolation
to the UDHS, but this isolation can be broken as shown by
Didelot [50]. We discuss this further in Section 5.2.5.

Trusted External Input. It is crucial that applica-
tions do not trust external input, especially regarding buffer
sizes. Nevertheless, the CAN bus implementation accepts
packets from the S-Band antenna and the SEPP of arbitrary
size. While individual CAN bus packets are limited to eight
bytes per transmission, an arbitrary number of packets can

12

https://github.com/CISPA-SysSec/SpaceOdyssey-QEMU-AVR32
https://github.com/CISPA-SysSec/SpaceOdyssey-QEMU-AVR32

be sent before the transmission-end marker is sent. Mean-
while, these packets are copied into a static buffer, allowing
an attacker to write beyond the intended bounds.

As seen in Figure 9, this vulnerability poses a data
injection threat to the CAN - TC Fetcher, which receives
telecommands from the PDHS (PDHS ∧

= SEPP). However,
the vulnerability can not be exploited from the S-Band
COM, as it consists only of an FPGA with insufficient fine-
granular control over the data transmitted on the CAN-bus.
Contrary, the PDHS has full control over the transmitted
data, allowing attackers that compromised the PDHS to
inject data into the Link-TC Fetcher.

The vulnerability does not yield an attacker new ca-
pabilities due to the existence of beforementioned critical
TC interfaces, which expose the critical TCs that enable
malicious firmware updates to the PDHS.

Vulnerable Libraries. The GomSpace NanoMind
SDK in the OBSW utilizes the uffs library, which imple-
ments a low-cost flash file system [33]. Interestingly, the
library is used on roughly 75 spacecrafts (cf. Section 7.1)
and, according to the library’s author, used by NASA [41].
We identified a stack-based buffer overflow vulnerability in
the file renaming procedure, where the name of the new file
is copied into a buffer of static size without any size check,
resulting in arbitrary code execution.

We experimentally verified that this vulnerability can
be exploited to gain arbitrary code execution. In OPS-SAT
this function is only exposed to an inaccessible Univer-
sal Asynchronous Receiver-Transmitter (UART) debug-port,
posing no security threat to OPS-SAT in its current state.
Still, moving files is a reasonable file system interaction to
be exposed via TC to semi-privileged attackers. Hence, if
one of the other roughly 75 spacecrafts implements such
functionality, it is likely vulnerable.

Memory Corruption in TC. We identified a buffer-
overflow vulnerability in the firmware, more precisely in the
ADCS server’s functionality that allows specifying a log
file. While the log file name is stored in a static buffer,
the strcat function that writes into this buffer copies the
string from a TC that can be larger than the static buffer,
resulting in a vulnerable TC. Hence, this vulnerability yields
an attacker control over the satellite through arbitrary code
execution in a single TC via the UHF - TC Fetcher interface,
as opposed to the malicious firmware update, which requires
multiple TCs. We successfully exploited this vulnerability in
our AVR32-QEMU emulation.

5.2.5. Payload Vulnerabilities. Complementary to our re-
search, Didelot conducted a non-academic security analysis
of the OPS-SAT payload [50]. Since OPS-SAT features a
rare chance to study a complex payload architecture with an
UDHS, this provides an excellent opportunity to show our
taxonomy’s broad applicability. Hence, in the following, we
summarize the payload exploitation present in Figure 9.

The PDHS deploys a Yocto Linux, which contains the
UDHS. Applications for the UDHS are developed in Java
using a custom framework from ESA. Then, on the satellite,
the Java applications are running in an isolated fashion and

S-Band

GPS ADCS

EPS

AIS CPN
PLOC + Secondary FPG

S-Band Tx

PANCAM

OSIRIS Tx MICS

CCSDS

CDHS

IO Board

Figure 10: Overview of the Flying Laptop components

are only supposed to interact with the PDHS through a
Supervisor, to which the interface is implemented in Java.
Didelot identified three notable vulnerabilities. The first is an
escape to PDHS vulnerability, where a command injection
into a supervisor’s shell command with input from the
UDHS application grants the attacker remote code execution
on the PDHS. The second vulnerability concerns the PDHS,
where an application deploys the uploaded experiments pro-
vided in the Zip format. By defining a target path using path
traversal outside the intended unpacking directory, attackers
can deploy arbitrary files on the Linux filesystem, resulting
in a vulnerable data processing vulnerability. While attack-
ers have escaped the UDHS isolation, they do not have root
privileges yet. However, another vulnerable data processing
vulnerability generates a list of sudo-capable users from a
directory with non-root access. Hence, any attacker with
access to the filesystem can gain root privileges. ESA has
fixed these vulnerabilities following a responsible disclosure
process by Didelot [50].

5.3. Flying Laptop

Flying Laptop is a small satellite launched in 2017,
operated by the Institute of Space Systems at the Univer-
sity of Stuttgart and developed in cooperation with Airbus
Defense and Space [51]. It is still in active use today. The
satellite serves as a technology demonstrator for a future
low-cost platform and includes an OBC from Airbus, which
provides valuable insights on how global defense and space
companies develop satellites. Additionally, the complexity
and size of the satellite, classified as medium/large, makes
it an excellent case study leading up to more complex
satellites.

5.3.1. Technical Analysis. Figure 10 presents a technical
overview of Flying Laptop with the upper part representing
the bus and the lower part being the satellite payload.

Satellite Bus. The bus follows the common satel-
lite architecture (cf. Section 2.2) and is centered around a
redundant Leon3 SPARC microprocessor as the OBC. The
OBSW uses the RTEMS RTOS v4.10.2 for TC/TM traffic
communication over the COM. The COM is connected
through a SpaceWire interface, which is a bus akin to a
CAN bus designed by ESA for space applications with tight
integration for the CCSDS protocol. Traffic to and from the
SpaceWire port is handled by a CCSDS de/encoding board
coupled with an S-band antenna. Curiously, the decoding is
performed transparently, which means that the OBSW still

13

COM Rx
COM

TC Fetcher
CDHS

Bus

AIS Rx
AIS PLCOM

CPN - PDHS
PD Fetcher

Payload
Satellite

Figure 11: The Flying Laptop threat model

receives a CCSDS packet. Hence, the OBSW implements
both a CCSDS and an SPP parser to receive TCs.

Satellite Payload. The purpose of the satellite pay-
load is to handle the data from the two cameras and the
Automatic Identification System (AIS) for maritime ves-
sel tracking. Therefore, it is centered around the Central-
Processing Node (CPN) that uses a full FPGA-based com-
puting setup on the Payload OBC (PLOC) with volatile
and persistent memory. After processing the data, it is sent
to the ground using the S-band transmitter or the optical
transmitter system OSIRIRS. Finally, the CPN deploys a
secondary FPGA that initializes the PLOC-FPGA, allowing
for post-launch firmware updates.

5.3.2. Threat Model. Figure 11 features the threat model
of Flying Laptop derived from our taxonomy. Surprisingly,
we did not identify a Bus-Payload Link, meaning the bus
and payload are fully isolated. On the payload, we only
identified the AIS receivers as an attack surface, the data of
which is processed on the PDHS.

5.3.3. Security Analysis. The main results of our security
assessment are summarized below. We could not verify our
findings beyond static code analysis, as building a proper
emulation was challenging due to a lack of peripheral doc-
umentation, and we had no access to a hardware model.
Figure 12 summarizes the vulnerabilities that we found
during our analysis.

Missing TC Authentication. To our understanding,
the CCSDS engine in the COM implements the decryption
of TCs. Crucially, it does not implement authentication of
TCs, which is only planned for the follow-up satellite [52].
Hence, external attackers may use replay attacks or forged-
ciphertext attacks to bypass decryption, depending on the
supported encryption type. Currently, this poses a compara-
bly limited security risk, considering that the other satellites
investigated do not even implement encryption. Regardless,
this shows that either the confidentiality of TCs was a
concern, which we consider unlikely, or that there was
the erroneous assumption that encryption would protect TC
integrity.

Dangerous TC. Flying Laptop offers a memcpy TC
similar to what ESTCube-1 does, where all arguments of
a memcpy call can be supplied through a telecommand,
exposing a dangerous TC. Attackers that bypassed the access
control can use this to execute arbitrary code. To exploit

COM Rx
• Missing Authentication

COM

TC Fetcher
• Dangerous TCs

CDHS

• TC Injection

Figure 12: Overview of Flying Laptop’s vulnerabilities

this, attackers need unrestricted access to the TC Fetcher
interface, which only fully-privileged operators have due to
the access protection in place. We do not consider this threat
scenario in this work but stress that this breaks one link in
the security chain, making access protection a single point
of failure.

Trusted Size Field. We found that the SPP imple-
mentation in the CDHS fully trusts the packet’s size field,
which is never sanitized and leads to a buffer overflow
vulnerability. Flying Laptop fully trust the size field con-
tained in SPP even after validating the CCSDS size field.
By doing this, attackers can include data from a previous TC
in their attacker command leading to TC Alteration, which
semi-privileged operators can exploit via the TC Fetcher to
effectively execute different commands, but only TCs that
the operator is authorized for on the GS (cf. Section 4.3.4).

Inconsistent Size Field. When working with a
buffer, the associated length field must be updated when-
ever the buffer is changed. However, we found a padding
mechanism in the CCSDS parser that skips leading padding
by incrementing the buffer pointer without updating the
corresponding size field. An attacker can use this to force the
CCSDS parser to read other TC packet data by overreading
the original buffer, effectively including other TC data in the
attacker’s TC, allowing semi-privileged operators to alter
their TC after upload. The vulnerability is also exploitable
via the TC Fetcher interface like the trusted size field.

6. Satellite Community Survey Results

To learn more about the technical context of modern
satellites and to better understand the awareness of industrial
practitioners regarding potential security risks, we surveyed
professionals that develop satellites. We use the survey
results 2 to embed the results of our case studies in a larger
context, allowing us to draw broader conclusions about
satellite firmware security.

6.1. Survey Background

In the following, we outline our survey design, discuss
ethical considerations, and provide an overview of our par-
ticipant selection process.

6.1.1. Survey Structure. We divide the survey into five
sections, asking about (i) demographics, (ii) background
information on the participant, (iii) details of a satellite
they worked on, (iv) personal experience with security of

2. A graphical representation of the questions and the results is available
at https://github.com/CISPA-SysSec/SpaceOdyssey-Survey

14

https://github.com/CISPA-SysSec/SpaceOdyssey-Survey

satellites, and (v) security-specific details of a satellite. For
demographics, we asked for age, gender, and country of res-
idence. Then we asked the participants how they are associ-
ated with satellite development and how many satellites they
had worked on. If they had worked on more than one, we
asked them to focus on one specific satellite for the satellite-
specific questions. In the following sections, we refer to
the surveyed satellite as “their satellite” in survey-specific
passages. Following that, we asked respondents for their
personal thoughts on security aspects of satellites, which we
use to formulate our attacker model (cf. Section 4). Finally,
we asked several technical questions about the security as-
pects of the surveyed satellite, while also giving participants
the option to abstain on individual questions. After the
last questions, we offered the interviewees to answer the
satellite-specific questions again for a different satellite.

6.1.2. Ethical Considerations. We developed our survey in
collaboration with a professional survey development team,
and the survey was approved by our internal review board.
When designing the survey, we also kept best practices like
the framework outlined by the Menlo Report [53] in mind.
The survey includes an informed consent section that in-
forms the respondents about the voluntary participation, the
survey’s purpose, a description of the procedure, the option
to skip questions, the collected data, our intent to publish
the results, and a privacy notice and contact information.

Due to the sensitive nature of satellite security, we pro-
vided a fully anonymous environment by not tracking any
personally identifiable information, such as IP addresses,
geographic locations, or personalized links. Further, we
allowed participants to skip questions, with the response
option “Prefer not to say / Don’t know” to corresponding
questions, which we refer to below as abstains.

6.1.3. Participants and Survey Access. We conducted
the survey using a self-hosted instance of Qualtrics. We
distributed the survey via a non-personalized link and a
non-personalized QR code. We did not publish access to
the survey, such as through social media, but distributed
it directly to eligible teams and individuals that develop
satellites. We took care, to the best of our abilities, that
only people with the required knowledge and expertise
had access to the survey. Thus, we deliberately did not
address engineers developing a specific hardware component
only and are otherwise not integrated into the satellite’s
development life cycle. We thereby addressed eligibles in
companies, academic institutions, and government as well
as international institutions.

In total, we received 19 survey responses covering 17
satellites and the participants have worked on a total of
132 satellites. Three participants answered questions about
their personal experiences but did not answer questions
about individual satellites, whilst one participant answered
questions about two satellites. Further, the sum of satellites
that the participants stated that they have worked on during
their career is 132. It should be noted that even with the
19 valid responses we received, it took about four months

to convince people to complete the survey. In general, we
observed that people were very reluctant to share any details
about their satellites and their security aspects.

6.2. Key Results

Looking back to our case studies, we consider the ab-
sence of proper TC access protection the most severe issue,
as it leads to bypass access protection vulnerabilities in
(PL)COM components (cf. Section 3.1.2). Additionally, we
uncovered several memory corruption-based vulnerabilities
in CDHS components, which is surprising given one would
assume that these critical space systems undergo rigorous
testing. Hence, we formulate three questions:

1) How common are unprotected TC interfaces?
2) Where are standardized space protocols used?
3) How are software components security-tested?

6.2.1. Missing Telecommand Protection. Our case studies
found that both OPS-SAT and ESTCube-1 expose bypass ac-
cess protection vulnerabilities in COM components, raising
the question of how common this issue is. Unfortunately,
there is no standard way to test this, e.g., by pinging
satellites and checking for a response indicating successful
TC processing. While there is research on access protec-
tion [54], [55], to the best of our knowledge, no research
has evaluated the prevalence of such protections.

In our survey of 19 professionals, we received responses
for 17 satellites: For nine satellites, it was stated that mea-
sures to prevent third parties from controlling the satellite
were implemented, while for three satellites, participants
stated outright that there are no measures. The other five
satellite responses declined to comment or did not know
for sure. While only 53% respondents are confident to state
that there are defenses (which is already quite low), the
defense mechanisms used paint a grim picture. To prevent
third parties from controlling the satellite, protocol obscurity
(5 votes) is tied with protocol encryption (5 votes). Further,
all 5 votes that stated “protocol obscurity” also stated that
they have measures in place to prevent third-party access,
which shows the prevalence of security by obscurity (cf.
Section 4.1). In addition, only 5 respondents stated that
they use access control on the satellite, indicating that TC
authentication is used less frequently than encryption.

In summary, according to our survey and experimental
findings, most small non-constellation LEO satellites have
no TC protection to defend against malicious access and
hence expose access protection bypass vulnerabilities. While
our results show that protocol obscurity is still prevalent,
they also point to a deeper issue with satellite on-board
security: It appears that even basic remote access protection
has not yet arrived in the architectural planning phase in
many of these satellites.

6.2.2. Standard Security Protocol Usage. During our case
studies, we found that ESTCube-1 uses a custom, minimal
protocol, OPS-SAT uses a CSP/SPP combination as well as

15

TABLE 3: Overview of the number of satellites that use
standardized and custom protocols per satellite weight.

<1 kg 1–50 kg 50–100 kg >100 kg

Standard Protocol 0 1 1 4
Custom Protocol 0 6 1 0
Abstains 0 3 0 1∑

0 10 2 5

a full CCSDS stack, and Flying Laptop uses a full CCSDS
stack for TCs in the COM. This is in line with our discussion
that more complex satellites use more complex solutions (cf.
Section 5).

Interestingly, ESTCube-1 uses a custom ICP protocol (cf.
Section 5.1.1), while Flying Laptop’s CCSDS stack specifi-
cation is readily available. This appears counter-intuitive, as
one would assume that small development teams would not
want to invest resources to create a fully custom commu-
nication protocol when they could use an existing solution.
To further test this assumption, we use our survey in which
7 participants stated that they do not use a standardized
protocol (which is the majority), while only 6 indicated that
they do. Table 3 shows the relationship between satellite
weights and the usage of a custom protocol. While satellite
weight and complexity are technically not the same, we
think they correlate as increasingly heavy satellites also
require higher launch costs and potentially more expensive
components, naturally increasing the project’s complexity.
Hence, from the table and our case studies, we can derive
that more complex satellites are more likely to use standard
protocols, raising the question of why this is the case.

6.2.3. Lack of Security Testing. Security testing meth-
ods such as fuzzing, symbolic execution, (bounded) model
checking, and penetration testing could have identified
the vulnerabilities uncovered during our case studies in
CDHS components. However, only 2 participants stated that
they used penetration testing, and 1 participant stated that
(bounded) model checking was used. None of the inter-
viewees used fuzzing or symbolic execution, indicating a
need for improvement. The vast majority of people surveyed
stated that they use other testing methods: unit-testing (14
votes) and hardware/software/model in-loop testing (14/10/6
votes). Ultimately, these techniques aim to ensure the cor-
rectness of software, which makes sense as a developer’s
main concern for space systems. As such, the lack of secu-
rity testing is not rooted in a lack of testing but rather in the
unawareness of advanced security-focused testing methods.

7. Discussion

We now reflect on the security issues we identified and
discuss potential limitations of our work.

7.1. Vulnerable Software Components

During our case studies, we encountered several mem-
ory corruption vulnerabilities, e.g., for OPS-SAT , we found
buffer overflows in the GomSpace SDK and the OBSW.
Similarly, we encountered trusted SPP length fields in Flying
Laptop, showing how vulnerable space domain software and
widespread libraries are.

While the vulnerability in the GomSpace SDK itself can
be fixed, the source of the problem lies in the uffs library,
which received the last code update in 2014. Hence, it is
unlikely that the library itself will be fixed and that fixes
will be upstreamed. Exact usage numbers of the library
are not published. According to a report, the GomSpace
NanoMind (and thus the SDK as well as the uffs library)
is part of more than 75 space missions as of 2022 [56]. In
addition, the developers of uffs stated that their library is
used by NASA [41]. Hence, our findings directly impact a
sizeable number of spacecraft. While this direct impact is
significant, it also points to a deeper issue concerning the
type of vulnerabilities. Ultimately, these well-known types
of vulnerabilities should not occur in critical modern space
systems.

Another library encountered during our analysis is
libCSP, which has similarly concerning vulnerabilities. Ac-
cording to the GitHub page, the library’s implementation of
cryptographic primitives suffers from predictable numbers
only used once (nonce) [57], timing side channels on MAC
verification, and replay attacks [58]. These issues likely
impact a sizeable number of spacecraft, as the library is
rather popular with 196 forks and 345 stars [59]. The
vulnerabilities indicate that security was of concern, but
the necessary knowledge on securely implementing cryp-
tographic primitives was inadequate.

Finally, straightforward exploitation of the vulnerabili-
ties presented here could be prevented by modern operating
systems that implement measures such as Address Space
Layout Randomization (ASLR), non-executable stacks, and
separated (root-) privileges. However, the RTOS systems
that we encountered did not implement any of these methods
on the satellites. Our work is a call to action to finally
implement modern defenses on satellite operating systems
to prevent straightforward exploitation.

In conclusion, the simple nature of these vulnerabilities
is a main reason for concern and shows that little security
research from the last decade has reached the space domain.

7.2. Challenging Protocol Standards

In Section 6.2.2, we uncovered that, counter-intuitively,
more complex satellites are more inclined to use standard
protocols, while small ones rather develop custom protocols.

To our understanding, the go-to choice for standard
protocols is the CCSDS family of protocols (cf. Section 2.3).
However, as previously stated, this ecosystem is complex
with at least 14 different protocols and options to use
Internet protocols (i.e., IPsec or TCP) [19]. Hence, selecting
the protocols for a use case is non-trivial, as each selected

16

protocol requires an individual investigation of the poten-
tial issues and advantages in complex standard documents.
While the same could be said for many domains, the space
domain suffers particularly from an absence of best prac-
tices, likely due to the security by obscurity principle (cf.
Section 4.1). Similarly, existing implementations are rare,
making it hard to find role models. In particular, we found
a Java-based implementation [60] that is unsuitable for the
CDHS systems we encountered.

Finally, putting aside industry limitations in using
CCSDS, we could not find a single mention of CCSDS in
top-tier security research conferences in the past ten years.
This is rather astonishing for a protocol that has been under
development since 1995 and is thus as old as SSL 2.0.

7.3. Limitations and Generality

In this paper, we faced several constraints concerning
our case studies and survey, as described below.

Case Studies. Due to scarce access to firmware
images, we are limited to a small number of satellites to
study. However, even with a larger number of study targets,
manual analysis is tedious due to a lack of documentation.
Regardless, we believe that we have been able to select and
analyze a representative sample of satellites that allows us
to present unique space domain challenges.

Survey. Our survey covers only a comparatively
small number of 19 satellite professionals. However, we
found that the community is small and secretive. Also, the
number of satellites the participants of our survey have
worked on adds up to a non-negligible number of 132, which
is significant in itself, but even more so when considering
that we conducted our survey only in Europe. Hence, we
believe that our sample is sufficient for our consideration.

8. Related Work

Satellite security research has only recently gained trac-
tion in light of the New Space Era.

Satellite-Based Network Security. Pavur et al. have
shown a lack of security in DVB-S and VSAT networks [61],
[62]. Additionally, Giuliari et al. investigated the resilience
of LEO constellations against DoS attacks [63]. In light
of this research, there have also been attempts to propose
mitigations. Pavur et al. proposed a QUIC-based VSAT
encryption scheme [64], Jedermann et al. proposed an orbital
authentication scheme [25], and Oligeri et al. proposed
spoofing detection methods for Iridium [65].

However, these topics solely focus on the payload net-
work security aspect, where the satellite is merely acting as
a bent pipe, while the internals are of no special relevance.

Satellite Security. Falco [13], as well as Living-
stone and Lewis [66], have discussed key aspects of why
space security differs from terrestrial security. Falco et al.
also introduced a framework to analyze the threats against
CubeSats [16]. Further, Manulis et al. have discussed aspects
of the New Space Era that must be considered in future
security research [67]. Additionally, two reports on space

asset threats by Harrison et al. have pointed out the dangers
posed by attacks [68], [69]. Ultimately, there is a plethora
of additional research on this topic, albeit of theoretic na-
ture [70]–[73] or involving simulations [23].

Hence, to our knowledge, our work is the first to provide
real-world insights into the security of live satellites and the
ecosystem evolving around them. As previously pointed out
by Pavur et al., the industry, for a long time, acted as a
gatekeeper to satellite security research by not providing any
software for research [15]. In this work, we finally overcome
this challenge and provide an impactful security analysis.

9. Conclusion

In this paper, we explore the state of satellite security
and systematically analyze the attack surface. We formulate
a generally applicable taxonomy of threats against satellite
firmware that allows us to derive satellite-specific threat
models, thereby overcoming prevailing but outdated as-
sumptions. We then study three satellites and find that all
expose different types of software vulnerabilities and largely
insufficient protections against attackers. Based on our tax-
onomy, we show that two satellites expose vulnerabilities
that enable attackers to execute arbitrary code, allowing
them to seize control of the satellite using firmware vul-
nerabilities, which has not been shown before. Challenging
our results with a survey amongst satellite professionals, we
confirm our findings and provide valuable insights into the
unique challenges of satellite security. We hope that this
work will serve as a starting point to study the security and
privacy aspects of satellites in the New Space Era.

Acknowledgments

We thank Annabelle Walle and Michael Schilling of
the empirical research support group and Avian Krämer of
the CISPA Helmholtz Center for Information Security for
their assistance. This work was funded by the European
Research Council (ERC) under the consolidator grant RS3

(101045669) and by the German Federal Ministry of Educa-
tion and Research (BMBF, project CPSec – 16KIS1564K).
The work was partially supported by the MKW-NRW re-
search training group SecHuman.

References

[1] O. Kodheli, E. Lagunas, N. Maturo, S. K. Sharma, B. Shankar, J. F. M.
Montoya, J. C. M. Duncan, D. Spano, S. Chatzinotas, S. Kisseleff
et al., “Satellite Communications in the New Space Era: A Survey
and Future Challenges,” IEEE Communications Surveys & Tutorials,
2020.

[2] United Nations Office for Outer Space Affairs (UNOOSA). (2022)
Online Index of Objects Launched into Outer Space. [Online].
Available: https://www.unoosa.org/oosa/osoindex/

[3] E. Kulu, “Satellite Constellations-2021 Industry Survey and Trends,”
in Small Satellite Conference, 2021.

[4] ——. (2019) Nanosats Database. [Online]. Available: https:
//www.nanosats.eu/

17

https://www.unoosa.org/oosa/osoindex/
https://www.nanosats.eu/
https://www.nanosats.eu/

[5] A. Camps, “Nanosatellites and Applications to Commercial and Sci-
entific Missions,” Satell. Mission. Technol. Geosci, 2020.

[6] S. Tsitas and J. Kingston, “6U CubeSat Commercial Applications,”
The Aeronautical Journal, 2012.

[7] I. Sünter, A. Slavinskis, U. Kvell, A. Vahter, H. Kuuste, M. Noorma,
J. Kutt, R. Vendt, K. Tarbe, M. Pajusalu et al., “Firmware Updating
Systems for Nanosatellites,” IEEE Aerospace and Electronic Systems
Magazine, 2016.

[8] R. L. Staehle, B. Anderson, B. Betts, D. Blaney, C. Chow, L. Fried-
man, H. Hemmati, D. Jones, A. Klesh, P. Liewer et al., “Interplanetary
CubeSats: Opening the Solar System to a Broad Community at Lower
Cost,” NTRS - NASA Technical Reports Server, 2012.

[9] Amazon Web Services. (2022) AWS Ground Station. [Online].
Available: https://aws.amazon.com/ground-station

[10] Microsoft Azure. (2022) Azure Orbital - Satellite Ground Station
and Scheduling Services for Fast Downlinking of Data. [Online].
Available: https://azure.microsoft.com/en-us/services/orbital

[11] M. Chlosta, D. Rupprecht, T. Holz, and C. Pöpper, “LTE Security
Disabled: Misconfiguration in Commercial Networks,” in ACM Con-
ference on Security and Privacy in Wireless and Mobile Networks
(WiSec), 2019.

[12] Committee on Science, Space, and Technology, “ASA Cybersecurity:
An Examination of the Agency’s Information Security,” Hearing
before the Subcommittee on Investigations and Oversight, Committee
on Science and Technology House of Representatives, 2012.

[13] G. Falco, “The Vacuum of Space Cyber Security,” in AIAA SPACE
and Astronautics Forum and Exposition. American Institute of
Aeronautics and Astronautics, 2018.

[14] B. Driessen, R. Hund, C. Willems, C. Paar, and T. Holz, “Don’t Trust
Satellite Phones: A Security Analysis of Two Satphone Standards,”
in IEEE Symposium on Security and Privacy (S&P), 2012.

[15] J. Pavur and I. Martinovic, “Building a Launchpad for Satellite Cyber-
security Research: Lessons from 60 Years of Spaceflight,” Journal of
Cybersecurity, 2022.

[16] G. Falco, A. Viswanathan, and A. Santangelo, “CubeSat Security
Attack Tree Analysis,” in IEEE International Conference on Space
Mission Challenges for Information Technology (SMC-IT), 2021.

[17] M. Manulis, C. P. Bridges, R. Harrison, V. Sekar, and A. Davis,
“Cyber Security in New Space,” International Journal of Information
Security, 2021.

[18] S. Cooper, “CCSDS Mission Operations Services in Space,” in
SpaceOps. Citeseer, 2012.

[19] Consultative Committee for Space Data System, “Overview of Space
Communication Protocols,” Consultative Committee for Space Data
System, Standard, 2014.

[20] I. A. Sanchez, G. Moury, and H. Weiss, “The CCSDS Space Data
Link Security Protocol,” in MILCOM, Committee on Science, Space,
and Technology Conference. IEEE, 2010.

[21] G. Falco and N. Boschetti, “A Security Risk Taxonomy for Commer-
cial Space Missions,” in ASCEND, 2021, p. 4241.

[22] M. Usman, M. Qaraqe, M. R. Asghar, and I. Shafique Ansari, “Mit-
igating Distributed Denial of Service Attacks in Satellite Networks,”
Transactions on Emerging Telecommunications Technologies, 2020.

[23] J. Pavur and I. Martinovic, “The Cyber-ASAT: On the Impact of
Cyber Weapons in Outer Space,” in International Conference on
Cyber Conflict. NATO CCD COE, 2019.

[24] J. Drmola and T. Hubik, “Kessler Syndrome: System Dynamics
Model,” Space Policy, 2018.

[25] E. Jedermann, M. Strohmeier, M. Schäfer, J. Schmitt, and V. Lenders,
“Orbit-based authentication using TDOA signatures in satellite net-
works,” in ACM Conference on Security and Privacy in Wireless and
Mobile Networks (WiSec), 2021.

[26] M. Qi and J. Chen, “An Enhanced Authentication with Key Agree-
ment Scheme for Satellite Communication Systems,” International
Journal of Satellite Communications and Networking, 2018.

[27] L. Szekeres, M. Payer, T. Wei, and D. Song, “SoK: Eternal War in
Memory,” in IEEE Symposium on Security and Privacy (S&P), 2013.

[28] G. Hunt, G. Letey, and E. Nightingale, “The Seven Properties of
Highly Secure Devices,” Tech. Rreport MSR-TR-2017-16, 2017.

[29] C. Li, Y. Zhang, R. Xie, X. Hao, and T. Huang, “Integrating Edge
Computing into Low Earth Orbit Satellite Networks: Architecture and
Prototype,” IEEE Access, 2021.

[30] R. Morrison. (2022) Data Centres in Space Will Boost Satellite Com-
puting Power and Storage. [Online]. Available: https://techmonitor.
ai/technology/data-centre/data-centres-space-satellite-computing

[31] B. Nussbaum and G. Berg, “Cybersecurity Implications of Commer-
cial Off The Shelf (COTS) Equipment in Space Infrastructure,” Space
infrastructures: From risk to resilience governance, 2020.

[32] ESA. (2019) Sandbox Satellite to Test Operations Innovations in
Space. [Online]. Available: https://www.esa.int/Enabling Support/
Operations/Sandbox satellite to test operations innovations in
space?fbclid=IwAR14Asw229u5rsCNfxHKbLPbaZ0Gk9Ryq6QrEy
-4eAuRnVxnZCHRMhtflI

[33] R. Zheng. (2015) UFFS: Ultra-low-cost Flash File System. [Online].
Available: https://github.com/rickyzheng/uffs

[34] S.-. Team. (2017) SUCHAI Cubesat Flight Software. [Online].
Available: https://github.com/spel-uchile/SUCHAI

[35] UPSat Team. (2016) UPSat - The First Open Source Satellite.
[Online]. Available: https://upsat.gr/

[36] Microsoft Azure. (2022) OreSat Firmware. [Online]. Available:
https://github.com/oresat/oresat-firmware

[37] V. Singh, A. Prabhakara, D. Zhang, O. Yağan, and S. Kumar,
“A Community-driven Approach to Democratize Access to Satellite
Ground Stations,” GetMobile: Mobile Computing and Communica-
tions, 2022.

[38] satnogs. (2022) SatNOGS Frontpage. [Online]. Available: https:
//satnogs.org/

[39] A. I. Support. (2022) Use Emergency SOS via satellite on your iPhone
14. [Online]. Available: https://support.apple.com/en-us/HT213426

[40] T. Scharnowski, N. Bars, M. Schloegel, E. Gustafson, M. Muench,
G. Vigna, C. Kruegel, T. Holz, and A. Abbasi, “Fuzzware: Using Pre-
cise MMIO Modeling for Effective Firmware Fuzzing,” in USENIX
Security Symposium, 2022.

[41] furryne and Ricky. (2018) Considering Using UFFS In Mission
Critical Application. [Online]. Available: https://groups.google.com/
g/uffs/c/6pBKhZq-FS0

[42] I. Sünter, “Design and Characterisation of Subsystems and Software
for ESTCube-1 Nanosatellite,” Ph.D. dissertation, Tartu University,
2019.

[43] Z. Durumeric, F. Li, J. Kasten, J. Amann, J. Beekman, M. Payer,
N. Weaver, D. Adrian, V. Paxson, M. Bailey et al., “The Matter of
Heartbleed,” in Internet Measurement Conference, 2014.

[44] O. Koudelka, M. Wittig, and D. Evans, “ESA’s OPS-SAT Nanosatel-
lite Mission-A Laboratory in the Sky,” in IAA Symposium on Small
Satellites and Earth Observation, 2015.

[45] D. Evans and M. Merri, “OPS-SAT: A ESA Nanosatellite for Ac-
celerating Innovation in Satellite Control,” in SpaceOps Conference,
2014.

[46] W. Zhang, Y. Xue, J. Wu, and X. Xu, “Satellite as a Service:
A Hybrid Resource Management Framework for Space-terrestrial
Integrated Networks,” in IEEE International Conference on Software
Engineering and Service Science (ICSESS). IEEE, 2020.

18

https://aws.amazon.com/ground-station
https://azure.microsoft.com/en-us/services/orbital
https://techmonitor.ai/technology/data-centre/data-centres-space-satellite-computing
https://techmonitor.ai/technology/data-centre/data-centres-space-satellite-computing
https://www.esa.int/Enabling_Support/Operations/Sandbox_satellite_to_test_operations_innovations_in_space?fbclid=IwAR14Asw229u5rsCNfxHKbLPbaZ0Gk9Ryq6QrEy_-4eAuRnVxnZCHRMhtflI
https://www.esa.int/Enabling_Support/Operations/Sandbox_satellite_to_test_operations_innovations_in_space?fbclid=IwAR14Asw229u5rsCNfxHKbLPbaZ0Gk9Ryq6QrEy_-4eAuRnVxnZCHRMhtflI
https://www.esa.int/Enabling_Support/Operations/Sandbox_satellite_to_test_operations_innovations_in_space?fbclid=IwAR14Asw229u5rsCNfxHKbLPbaZ0Gk9Ryq6QrEy_-4eAuRnVxnZCHRMhtflI
https://www.esa.int/Enabling_Support/Operations/Sandbox_satellite_to_test_operations_innovations_in_space?fbclid=IwAR14Asw229u5rsCNfxHKbLPbaZ0Gk9Ryq6QrEy_-4eAuRnVxnZCHRMhtflI
https://github.com/rickyzheng/uffs
https://github.com/spel-uchile/SUCHAI
https://upsat.gr/
https://github.com/oresat/oresat-firmware
https://satnogs.org/
https://satnogs.org/
https://support.apple.com/en-us/HT213426
https://groups.google.com/g/uffs/c/6pBKhZq-FS0
https://groups.google.com/g/uffs/c/6pBKhZq-FS0

[47] M. Quadrini, “Development of a Testing Emulation Platform for the
Validation and Design of 5G Satellite Services,” in International
Symposium on Advanced Electrical and Communication Technologies
(ISAECT). IEEE, 2021.

[48] CySec. (2022) Hack CySat. [Online]. Available: https://hack.cysat.eu/

[49] GomSpace. (2022) NanoMind A3200. [Online]. Avail-
able: https://gomspace.com/shop/subsystems/command-and-data-
handling/nanomind-a3200.aspx

[50] M.-M. Didelot. (2021) How I Hacked an ESA’s Experimental
Satellite. [Online]. Available: https://www.deadf00d.com/post/how-
to-hack-an-esa-experimental-satellite.html

[51] M. Pikelj and R. Heinrich. (2017) Successful Launch
of German Technology Mini Satellite. [Online]. Avail-
able: https://www.airbus.com/en/newsroom/press-releases/2017-07-
successful-launch-of-german-technology-mini-satellite

[52] J. Eickhoff, B. Chintalapati, P. Stoecker, W. von Kader, R. Traussnig,
C. Sayer, R. Peel, and M. Keynes, The Flexible LEO Platform
for Small Satellite Missions. Deutsche Gesellschaft für Luft-und
Raumfahrt-Lilienthal-Oberth eV, 2018.

[53] U. D. of Homeland Security. (2012) The Menlo Report.
[Online]. Available: https://www.caida.org/publications/papers/2012/
menlo report actual formatted/

[54] S. S. Saha, S. Rahman, M. U. Ahmed, and S. K. Aditya, “Ensuring
Cybersecure Telemetry and Telecommand in Small Satellites: Recent
Trends and Empirical Propositions,” IEEE Aerospace and Electronic
Systems Magazine, 2019.

[55] S. Spinsante, F. Chiaraluce, and E. Gambi, “Evaluation of AES-
based Authentication and Encryption Schemes for Telecommand and
Telemetry in Satellite Applications,” in SpaceOps Conference, 2006.

[56] GomSpace. (2022) Investor Presentation: Q1 Re-
sult and New Long-term Strategy. [Online]. Avail-
able: https://gomspace.com/UserFiles/Invester%20relations/investor
presentation may2022 ABG 3-5-2022.pdf

[57] diamondo25. (2020) XTEA Encrypt Packet Nonce too Predictable.
[Online]. Available: https://github.com/libcsp/libcsp/issues/162

[58] thusoy. (2020) MAC Comparison Leaks Timing Data. [Online].
Available: https://github.com/libcsp/libcsp/issues/44

[59] J. De Claville Christiansen, Y. SHOJI, and LibCSP Contributors.
(2015) Cubesat Space Protocol - A Small Network-layer Delivery
Protocol Designed for Cubesats. [Online]. Available: https://github.
com/libcsp/libcsp

[60] D. Lucia, sv5d, and L. Bremond. (2022) Open Source Java
Implementation of Publicly Available CCSDS Standards. [Online].
Available: https://github.com/dariol83/ccsds

[61] J. Pavur, D. Moser, M. Strohmeier, V. Lenders, and I. Martinovic, “A
Tale of Sea and Sky on the Security of Maritime VSAT Communica-
tions,” in IEEE Symposium on Security and Privacy (S&P). IEEE,
2020.

[62] J. Pavur, D. Moser, V. Lenders, and I. Martinovic, “Secrets in the
Sky: On Privacy and Infrastructure Security in DVB-S Satellite
Broadband,” in ACM Conference on Security and Privacy in Wireless
and Mobile Networks (WiSec), 2019.

[63] G. Giuliari, T. Ciussani, A. Perrig, and A. Singla, “ICARUS: At-
tacking Low Earth Orbit Satellite Networks,” in USENIX Annual
Technical Conference (ATC), 2021.

[64] J. Pavur, M. Strohmeier, V. Lenders, and I. Martinovic, “QPEP:
An Actionable Approach to Secure and Performant Broadband from
Geostationary Orbit,” Symposium on Network and Distributed System
Security (NDSS), 2021.

[65] G. Oligeri, S. Sciancalepore, and R. Di Pietro, “GNSS spoofing
detection via opportunistic IRIDIUM signals,” in ACM Conference
on Security and Privacy in Wireless and Mobile Networks (WiSec),
2020.

[66] D. Livingstone and P. Lewis, Space, the Final Frontier for Cyberse-
curity? Chatham House. The Royal Institute of International Affairs,
2016.

[67] M. Manulis, C. P. Bridges, R. Harrison, V. Sekar, and A. Davis,
“Cyber Security in New Space,” International Journal of Information
Security, 2020.

[68] T. Harrison, K. Johnson, and T. G. Roberts, Space Threat Assessment
2019. Center for Strategic & International Studies., 2019.

[69] T. Harrison, K. Johnson, T. G. Roberts, T. Way, and M. Young,
Spacethreat Assessment 2020. Center for Strategic and International
Studies, 2020.

[70] D. P. Fidler, “Cybersecurity and the New Era of Space Activities,”
Digital and Cyberspace Policy Program, 2018.

[71] D. Barnard-Wills and D. Ashenden, “Securing Virtual Space: Cyber
War, Cyber Terror, and Risk,” Space and Culture, 2012.

[72] G. Falco, “Job One for Space Force: Space Asset Cybersecurity,”
Belfer Center for Science and International Affairs, Harvard Kennedy
School, 2018.

[73] L. Yang, X. Cao, and J. Li, “A New Cyber Security Risk Eevaluation
Method for Oil and Gas SCADA based on Factor State Space,” Chaos,
Solitons & Fractals, 2016.

19

https://hack.cysat.eu/
https://gomspace.com/shop/subsystems/command-and-data-handling/nanomind-a3200.aspx
https://gomspace.com/shop/subsystems/command-and-data-handling/nanomind-a3200.aspx
https://www.deadf00d.com/post/how-to-hack-an-esa-experimental-satellite.html
https://www.deadf00d.com/post/how-to-hack-an-esa-experimental-satellite.html
https://www.airbus.com/en/newsroom/press-releases/2017-07-successful-launch-of-german-technology-mini-satellite
https://www.airbus.com/en/newsroom/press-releases/2017-07-successful-launch-of-german-technology-mini-satellite
https://www.caida.org/publications/papers/2012/menlo_report_actual_formatted/
https://www.caida.org/publications/papers/2012/menlo_report_actual_formatted/
https://gomspace.com/UserFiles/Invester%20relations/investor_presentation_may2022_ABG_3-5-2022.pdf
https://gomspace.com/UserFiles/Invester%20relations/investor_presentation_may2022_ABG_3-5-2022.pdf
https://github.com/libcsp/libcsp/issues/162
https://github.com/libcsp/libcsp/issues/44
https://github.com/libcsp/libcsp
https://github.com/libcsp/libcsp
https://github.com/dariol83/ccsds

	Introduction
	Satellite Context
	Satellite Operations
	Ground Segment
	Space Segment
	User Segment

	Satellite Architecture
	Command and Data Handling System (CDHS)
	Communications Module (COM)
	Attitude Determination and Control System (ADCS)
	Power Supply (EPS)
	Payload

	Satellite Communication Protocols

	Satellite Firmware Threats
	Threat Taxonomy
	Control Layer
	Components Layer
	Interface Layer

	Deriving Satellite-specific Insights
	Deriving a Satellite-specific Model
	Extracting the Attack Tree and Surface

	Attacker Model
	Attacker Knowledge
	Attacker Access Level
	Attacker Models
	External Attackers
	Malicious Payload Users
	Malicious Payload Service Hoster
	Operators

	Case Studies
	ESTCube-1
	Technical Analysis
	Threat Model
	Security Analysis

	OPS-SAT
	Technical Analysis
	Threat Model
	Experimental Setup
	Security Analysis
	Payload Vulnerabilities

	Flying Laptop
	Technical Analysis
	Threat Model
	Security Analysis

	Satellite Community Survey Results
	Survey Background
	Survey Structure
	Ethical Considerations
	Participants and Survey Access

	Key Results
	Missing Telecommand Protection
	Standard Security Protocol Usage
	Lack of Security Testing

	Discussion
	Vulnerable Software Components
	Challenging Protocol Standards
	Limitations and Generality

	Related Work
	Conclusion
	References

