

Satellite Cybersecurity Reconnaissance

Strategies and their Real-world Evaluation

Johannes Willbold*, Franklyn Sciberras‡, Martin Strohmeier^, Vincent Lenders^

*Ruhr University Bochum, Chair for Systems Security ‡ETH Zürich, Department of Computer Science, ^armasuisse Science + Technology, Cyber-Defence Campus

Security by Obscurity

Space Odyssey: An Experimental Software Security Analysis of Satellites

Johannes Willbold*, Moritz Schloegel*[‡], Manuel Vögele*, Maximilian Gerhardt*, Thorsten Holz[‡], Ali Abbasi[‡]

*Ruhr University Bochum, firstname.lastname@rub.de [‡]CISPA Helmholtz Center for Information Security, lastname@cispa.de

Abstract—Satellites are an essential aspect of our modern society and have contributed significantly to the way we live today, most notable through modern telecommunications, global positioning, and Earth observation. In recent years, and especially in the wake of the *New Space Era*, the number of satellite deployments has seen explosive growth. Despite its critical importance, little academic research has been conducted on satellite security and, in particular, on the security of onboard firmware. This lack likely stems from by now outdated assumptions on achieving security by obscurity, effectively preventing meaningful research on satellite firmware. In this name, we first provide a tayonomy of threats

0

in 2022 [2]. The vast majority of these satellites form megaconstellations like *Starlink*, which plans to launch more than 40,000 satellites in the coming years [3].

Small satellites [4] are at the heart of this *New Space Era* as their size and the widespread use of Commercial off-theshelf (COTS) components makes them affordable even for small institutions. Furthermore, they cover a broad spectrum of use cases ranging from commercial applications (like Earth observation, machine-to-machine communication, and Internet services) to research applications, such as technology testing, weather and earthquake forecasting, and even interplanetary missions [5]–[8]. • Unsecured satellites

- Satellites rely on Security-by-Obscurity
- Where is the obscurity-breaking information coming from?

Reconnaissance

- How can attackers break obscurity?
- => How feasible is reconnaissance for satellites?
- What information is public?

Attacker Models

0

•

•

 \mathbf{O}

0

 \mathbf{O}

•

•

Privilieged Attacker

Privileged Attacker

 \mathbf{O}

•

No Technical Insights

Received Access Credentials

•

 \rightarrow On-Board Reconnaissance

 \mathbf{O}

18 Reconnaissance Goals

•

•

0

12 Reconnaissance Strategies

•

2 Strategy Evaluations

Reconnaissance Coals

Spacecraft Tracking & Operations

0

Radio Communication Parameters

Network Protocol Stacks

TMTC Protocols

Reconnaissance Coals

Spacecraft Tracking & Operations

Radio Communication Parameters

Network Protocol Stacks

TMTC Protocols

=> Common goals not all

Spacecraft Tracking & Operations

•

• Tracking (TLE)

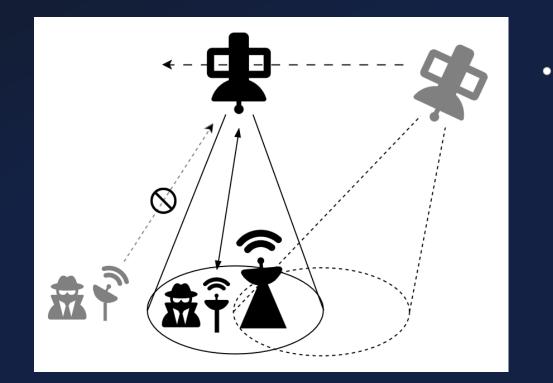
GS Pointing

•

- Satellite Attitude
- Operational Time Frame

 \mathbf{O}

Spacecraft Tracking & Operations


- Tracking (TLE)
- GS Pointing

•

 \mathbf{O}

- Satellite Attitude
- Operational Time Frame

 \circ

Spacecraft Tracking & Operations

 \mathbf{O}

- Tracking (TLE)
- GS Pointing

•

- Satellite Attitude
- Operational Time_•Frame

 \mathbf{O}

Radio Communication Parameters

•

- Signal Strength
- Frequency

•

• Error Correction

 \circ

 \mathbf{O}

Radio Communication Parameters

•

- Signal Strength
- Frequency

•

 \mathbf{O}

• Error Correction

•

 \mathbf{O}

Radio Communication Parameters

- Signal Strength
- Frequency

•

 \mathbf{O}

• Error Correction

 \circ

 \mathbf{O}

•

Network Protocol Stacks

Point-to-Point Protocols

- Vendor-specific Implementation Details
- Cryptographic Communications Protection
- Network Protocols and Routing

TMTC Protocols

•

 \bullet

•

- Telecommand Set
- TMTC Formats

•

•

•

Open Databases

Public Regulator Filings

•

Common Options

COTS Analysis Passive Traffic Analysis

Active Enumeration

Open Databases

•

- Launch: YYYY-XXX
- INTELDES/COSPAR ID: YYYY-XXXA/B/...
- JWST: 2021-130A

Open Databases

- Launch: YYYY-XXX
- INTELDES/COSPAR ID: YYYY-XXXA/B/...
- JWST: 2021-130A
- US Space Surveillance Network (SSN)
- Tracked Obj -> SATCAT/NORAD ID
- => TLE

Open Databases

- Launch: YYYY-XXX
- INTELDES/COSPAR ID: YYYY-XXXA/B/...
- JWST: 2021-130A
- US Space Surveillance Network (SSN)
- Tracked Obj -> SATCAT/NORAD ID
- => TLE
- space-track website: COSPAR ID <=> NORAD ID

Public Regulator Filings

Satellite Space Stations : Application to Launch and Operate

FCC IB : SAT-LOA

0

FCC.report > IB > Filing Categories > SAT Satellite Space Stations > LOA Application to Launch and Operate Applications for satellite space station authorizations (Part 25) Authority to launch and operate a satellite space station

Latest Satellite Space Stations : Application to Launch and Operate Filings by Status Update

Last Update	File Number	Applicant	Callsign	Status
2023-06-13	SAT-LOA-20230612-00136	Outpost Technologies Corporation	S3174	Filed - payment received
2023-06-13	SAT-LOA-20230613-00141	Sidus Space, Inc.	S3175	Filed - payment received
2023-05-05	SAT-LOA-20210107-00004	Intelsat License LLC	S3078	Action Taken Public Notice

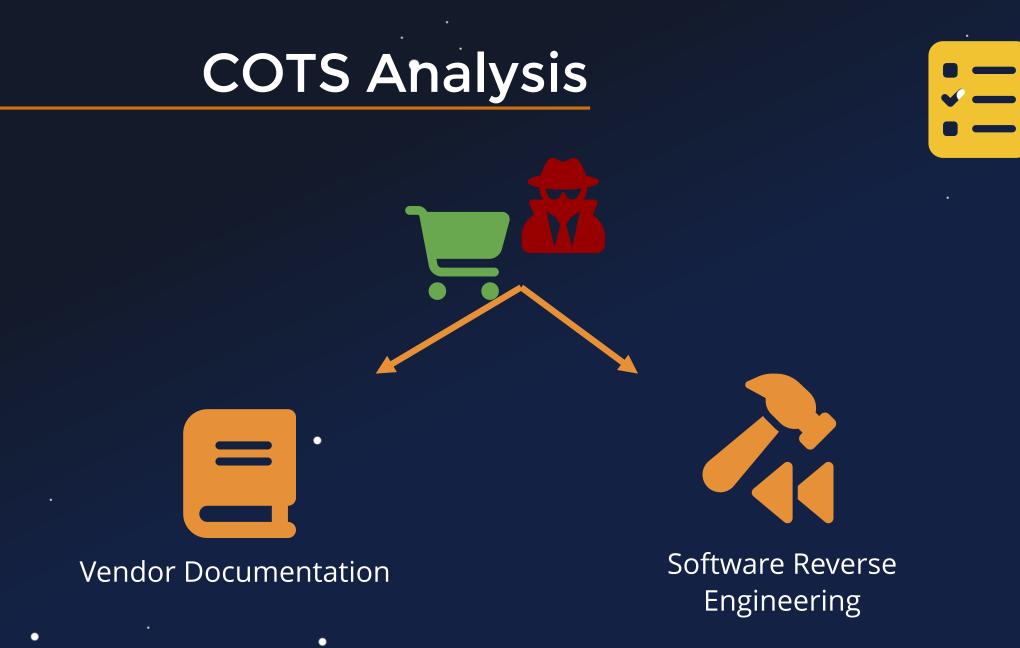
Satellite Space Stations: Application to Launch and Operate

• TT&C Frequency

- Payload Frequency
- GS Location
- Other

Common Options

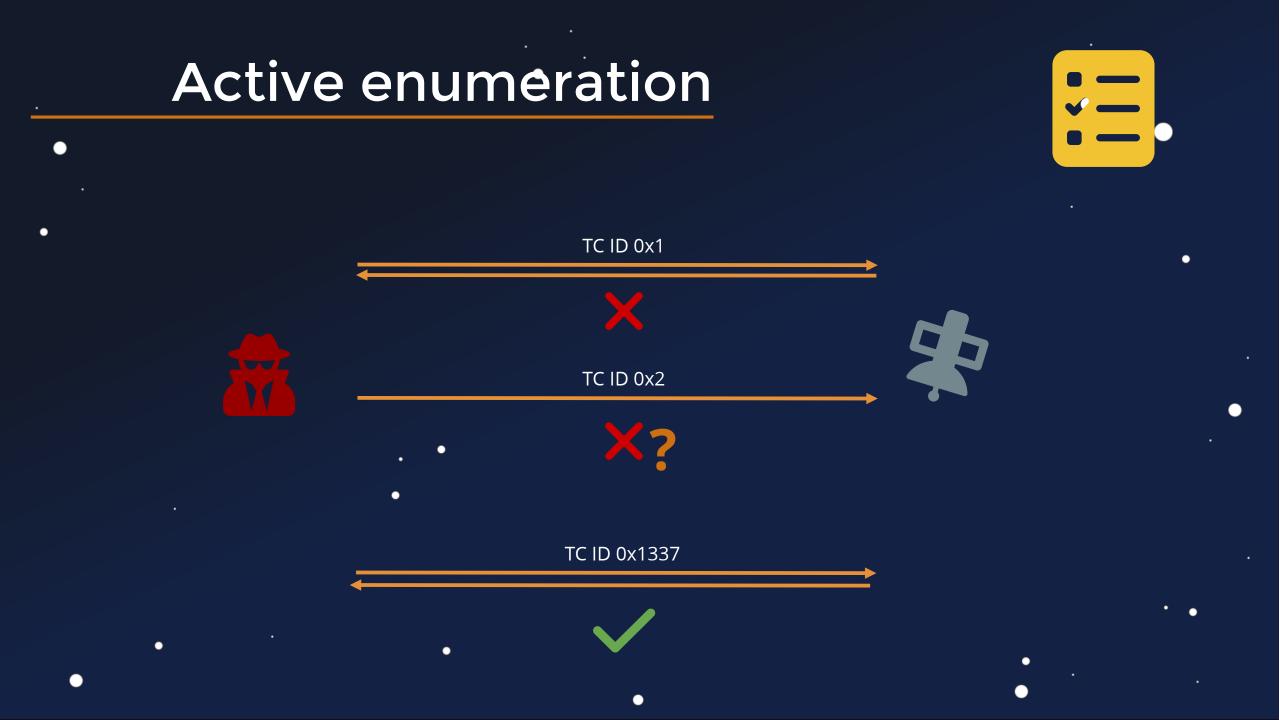
•


0

0

•

GS Location Inference



•

 \mathbf{O}

•

Goal-to-Strategy

 \mathbf{O}

•

 \bigcirc

Goal / Strategy	Open Database	Regulator Filings	Common Option	COTS Analysis	Traffic Analysis	Active Enumeration	
Space Object ID	X	-	-	-	-	-	
Tracking (TLE)	x	-	-	-	-	-	
GS Location	-	\sim	Х	-	\sim	-	
Time Window	-	\sim	-	-	Х	-	
TT&C Channels	~	Х	-	Х	Х	-	
TT&C Modulation	$ \sim$	\sim	х	Х	Х	-	
TT&C Synchronization	-	-	х	\sim	Х	-	
TT&C P2P Protocols	-	-	х	\sim	Х	-	
Vendor-Specific Prot.	-	-	-	Х	Х	-	
TT&C Crypto. Prot.	-	-	\sim	\sim	Х	\sim	
TT&C Network Layer	-	-	-	\sim	Х	-	
Telecommand Set	-	-	-	\sim	Х	Х	
TMTC Formats	-	-	-	\sim	Х	х	

•

 \bullet

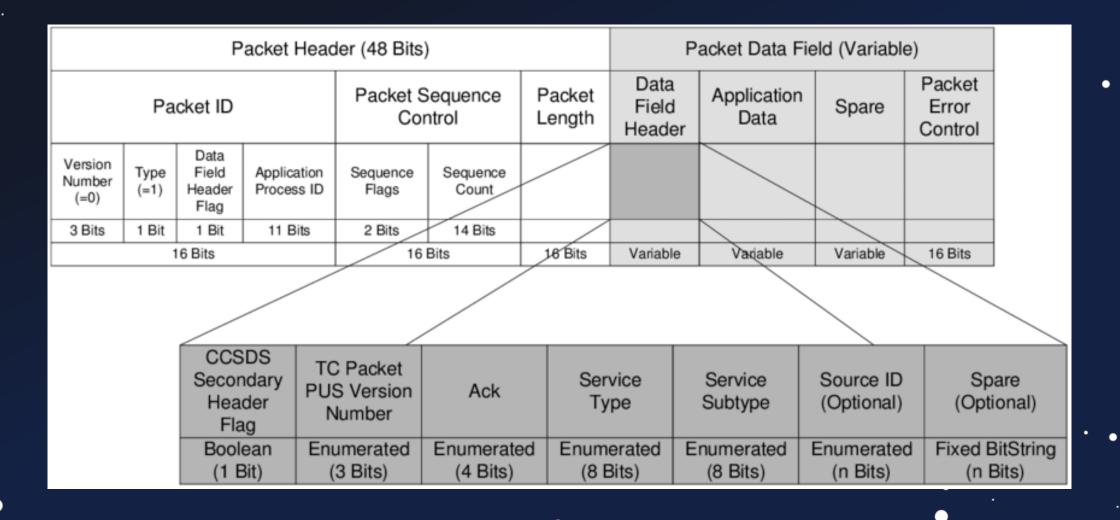
 \mathbf{O}

•

Public Regulator Filings -> FCC Filings •

Active Enumeration
-> ECSS PUS Analysis

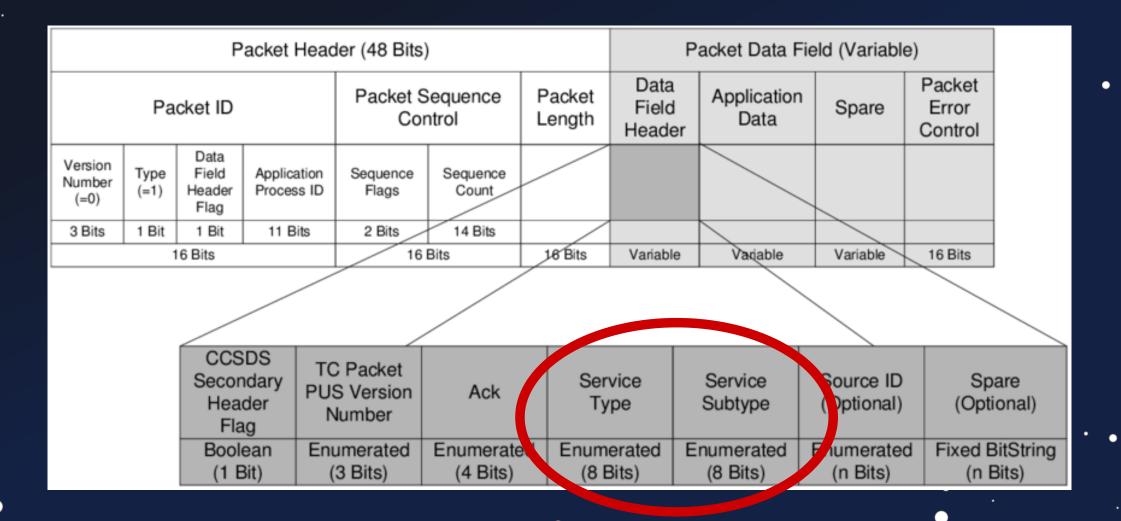
FCC Filings


•

0

•

•


Туре	Satellite	Reference	TT&C	GS
VSAT	ViaSat-3	SAT-LOA-2019061700048	$14,000.3, 14,001.0, 14,498.5, 14,499.0\mathrm{MHz}$	-
VSAT	EutelSat 133WA	SAT-MPL-2018090800068	$2085.688 \text{ and } 13,750.6 \mathrm{MHz}$	x
VSAT	OneWeb	SAT-MPL-20200526-00062	$19,265 – 19,300\mathrm{MHz}$	X
VSAT	Starlink	SAT-MOD-2018110800083	$13,\!875.0,13,\!925.0,13,\!975.0\mathrm{MHz}$	\sim
SA	HawkEye 360	SAT-LOA-20190102-00001	$2063-2065\mathrm{MHz},432-438\mathrm{MHz}$	X
EO	PlanetLabs Pelican	SAT-MOD-2022042100042312	$2056, 2066, 2086, 2096 \mathrm{MHz}$	x

 \bigcirc

lacksquare

•

 \bigcirc

•

CCSDS Secondary Header Flag	TC Packet PUS Version Number	Ack	Service Type	Service Subtype	Source ID (Optional)	Spare (Optional)
Boolean	Enumerated	Enumerated	Enumerated	Enumerated	Enumerated	Fixed BitString
(1 Bit)	(3 Bits)	(4 Bits)	(8 Bits)	(8 Bits)	(n Bits)	(n Bits)

No.	Service Name
1	Telecommand Verification Service
2	Device Command Distribution Service
3	Housekeeping and Diagnostic Data Reporting Service
4	Parameter Statistics Reporting Service
5	Event Reporting Service
6	Memory Management Service
8	Function Management Service
9	Time Management Service
11	On-board Operations Scheduling Service
12	On-board Monitoring Service
13	Large Data Transfer Service
14	Packet Forwarding Control Service
15	On-board Storage and Retrieval Service
17	Test Service
18	On-board Operations Procedure Service
19	Event-Action Service

- 255 potential services
- Each Services: 255 potential subservices
=> 65.035 potential Subservices

CCSDS Secondary Header Flag	TC Packet PUS Version Number	Ack	Service Type	Service Subtype	ource ID Optional)	Spare (Optional)	
Boolean (1 Bit)	Enumerated (3 Bits)	Enumerate (4 Bits)	Enumerated (8 Bits)	Enumerated (8 Bits)	iumerated (n Bits)	Fixed BitString (n Bits)	

No.	Service Name
1	Telecommand Verification Service
23	Device Command Distribution Service
3	Housekeeping and Diagnostic Data Reporting Service
4	Parameter Statistics Reporting Service
5	Event Reporting Service
6	Memory Management Service
8	Function Management Service
9	Time Management Service
11	On-board Operations Scheduling Service
12	On-board Monitoring Service
13	Large Data Transfer Service
14	Packet Forwarding Control Service
15	On-board Storage and Retrieval Service
17	Test Service
18	On-board Operations Procedure Service
19	Event-Action Service

- 255 potential services
- Each Services: 255 potential subservices
=> 65.035 potential Subservices

No.	Service Name
1	Telecommand Verification Service
2	Device Command Distribution Service
3	Housekeeping and Diagnostic Data Reporting Service
4	Parameter Statistics Reporting Service
5	Event Reporting Service
6	Memory Management Service
8	Function Management Service
9	Time Management Service
11	On-board Operations Scheduling Service
12	On-board Monitoring Service
13	Large Data Transfer Service
14	Packet Forwarding Control Service
15	On-board Storage and Retrieval Service
17	Test Service
18	On-board Operations Procedure Service
19	Event-Action Service

Error Code	Description
0	Illegal APID
1	Incomplete or invalid length packet
2	Incorrect Checksum
3	Illegal packet type
4	Illegal packet subtype
5	Illegal or inconsistent application data
> 5	Mission-specific codes

- Service 1, SubService 1 => Error 3
 - Service doesn't exist
- Service 2, SubService 1 -> Error 5
 - Service exists, SubService exists, Wrong data
- Service 2, SubService 2 -> Error 4
 - Service exists SubService does not exist

•

- Command ID
- Subcommand ID

•

- Error Message
- => Simple Iteration

 \mathbf{O}

18 Reconnaissance Goals

12 Reconnaissance Strategies

@jwillbold
in /jwillbold

2 Strategy Evaluations

Johannes Willbold - johannes.willbold@rub.de